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EXECUTIVE SUMMARY

1	 The FCC Internet Access Services report mentions that there were 1,027,000 residential fixed 
internet connections in 2010 with download speed equal or above 25 Mbps (Internet Access 
Services Report 2010, Table 13, p.32). Considering that there were 117,671,000 households in 
2010 (p, 35), this results in 0.87% penetration. Penetration for 2020, not yet provided by the FCC, 
was estimated based on fixed broadband penetration growth rate reported in the American 
Community Survey.

2	 Ookla Speedtest

What is the contribution of a robust broadband infrastructure to the growth of the 
US economy? Broadband high-speed internet is a general-purpose technology 
because it supports all types of economic activity, driving output growth beyond 
the impact of conventional capital goods. As such, broadband now constitutes 
a key component of the underlying infrastructure for development, like roads 
and electricity. Accordingly, it is possible to measure its contribution to the US 
economic growth over the last decade. 

Between 2010 and 2020, the US economy grew at an 
average rate of 3.3%. Adoption of fixed broadband 
connections of at least 25 Mbps download speed 
increased from 0.87% of households in 2010 to 
65.69% in 20191, and, consequently, the fixed 
broadband average download speed grew from 
10.03 Mbps in 2010 to 174.23 Mbps in 20202. What is 
the contribution of this dramatic expansion to the 
country’s economic growth? What would have been 
the economic gains if broadband had remained 
unchanged since 2010? Graphic A presents a high-
level view of the sources of US GDP growth between 
2010 and 2020.

If broadband adoption 
and speeds had 
remained at 2010 
levels, in 2020 the US 
GDP would have been 
$1.3 trillion lower 
($19.6 trillion, rather 
than $20.9 trillion).
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Graphic A. Sources of US GDP growth 2010-2020
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As indicated in Graphic A, capital accumulation has been the main contributor to the 
US GDP growth (56.2% of cumulative GDP growth between 2010 and 2020), while labor 
and human capital have also been important contributors (21.3%). Beyond capital, 
labor, and human capital, the expansion of fixed broadband networks and their 
speed improvement emerge as crucial sources of growth. Fixed broadband adoption 
drove 10.9% of the accumulated growth, while speed improvement contributed to an 
additional 11.5%. Accordingly, if broadband adoption and speeds had remained at 2010 
levels, in 2020 the US GDP would have been $1.3 trillion lower ($19.6 trillion, rather than 
$20.9 trillion). This is equivalent to almost $4,000 annual dollars less for the average 
American. 
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Beyond the GDP growth driven by broadband infrastructure, consumers 
receive a surplus linked to the fulfillment of a whole new range of applications 
in the areas of communications, entertainment and information. The gains 
in consumer surplus are associated with a wider portion of the population to 
communicate with as well as faster speed. Aggregated consumer surplus at 
the national level increased to over $186 billion in 2020 (up from $81.6 billion in 
2010) as a result of increased connectivity.  And an additional $186.2 billon of 
consumer surplus is realized, when considering the significant improvements 
in average broadband speeds (see Graphic B).

Aggregated consumer surplus at the national level 
increased to over $186 billion in 2020 (up from $81.6 
billion in 2010) as a result of increased connectivity.  And 
an additional $186.2 billon of consumer surplus is realized, 
when considering the significant improvements in average 
broadband speeds.
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Graphic B. United States: consumer surplus  
generated since 2010 from broadband connections  
and speed increases

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Consumer surplus from speed improvements since 2010
Consumer surplus from internet connections

Source: Telecom Advisory Services analysis

It appears from the estimates that the relative weight of speed improvements 
over the total consumer surplus increases considerably. This may be explained 
by the decreasing network effects generated once a certain threshold of internet 
penetration is reached. With diminishing network effects, the larger source of 
consumer surplus is driven by faster connectivity speeds.
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1.  INTRODUCTION

1	 Federal Communications Commission. Internet Access Services: Status of December 31, 2010
2	 Federal Communications Commission. Internet Access Services: Status of June 30, 2019.
3	 Capital deepening -or capital intensity- is an accumulation process where the capital stock per worker is increasing, resulting in a driver of economic growth.
4	 Katz, R. and Jung, J. (2022). The role of America’s robust broadband infrastructure in building economic resiliency during the Covid-19 pandemic. 

The purpose of this study is to estimate the contribution of 
fixed broadband to the American economy during the period 
2010-2020. This was a decade of exceptional economic 
performance for the country, averaging annual growth 
rates of 3.3%, driven by the strong recovery that followed 
the financial crisis of 2007-2009. That growth trend was 
only interrupted in 2020 due to the COVID-19 pandemic. 

In this context, our objective is to analyze to what extent 
economic growth can be traced back in part to the massive 
fixed broadband diffusion that took place in the country 
during that period. In other words, how much economic 
growth would the economy have missed out on if broadband 
had remained at the 2010 level? 

As demonstrated in the research literature conducted over 
the past twenty years, broadband diffusion is a key driver of 
economic growth (Koutroumpis, 2009; Czernich et al, 2011; 
Katz et al, 2012; Bertschek et al, 2013; Arvin and Pradhan, 
2014; Katz and Callorda, 2018). This should be the case in the 
United States as well. In 2010, fixed broadband of more than 
25 Mbps download speed had been adopted only by 0.87% of 
households1. By mid-2019, household penetration levels for 
that speed tier reached approximately 65.69%2. 

Beyond fixed broadband development, the country 
underwent significant   economic changes during that 
period. For example, as an indication of capital deepening 
process3, physical capital stocks grew at a yearly average 
of 4.1%. Similarly, labor contributed massively to economic 
growth: in 2019, there were nearly 29 million new jobs when 
compared with 2010 (a massive increase that came to a halt 
in 2020 due the COVID-19 recession). Jobs by 2019 had not 
only grown in quantity, but workers were also more skilled 
than before: while 39% of the population aged between 25 
and 64 had tertiary education in 2010, that figure increased 
to 44% by 2020. Since the potential sources of economic 
growth were so diverse, it is necessary to disaggregate 
them into the different drivers to isolate the role of fixed 
broadband as a contributor. 

A specific mention must be made to the role of fixed 
broadband in creating socioeconomic resiliency during 
2020, as the outbreak created by the COVID-19 pandemic 
generated a major disruption in social and production 
processes. The role of broadband in providing resiliency 
during the pandemic will be analyzed in a separate study4.

The study is structured as follows. Section 2 provides a 
review of the relevant empirical research conducted so far 
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to assess the economic contribution of broadband in the 
United States. Section 3 presents a descriptive analysis 
of the main trends in economic growth and broadband 
adoption during the decade under study. Section 4 proposes 
a theoretical framework that isolates the contribution of 
fixed broadband in explaining the economic growth at the 
national and state level. Section 5 describes the dataset 

5	 In econometrics,  endogeneity broadly refers to situations in which an explanatory variable  is  correlated with the error term. It might lead to biased estimates. 
Instrumental variables are commonly used to address this problem.

built for conducting the econometric analyses, detailing 
the description of variables and their sources. Section 6 
reports the econometric estimations for the models under 
different specifications and empirical approaches. Section 
7 presents a growth accounting exercise to decompose the 
sources of growth to calculate the specific contribution 
attributable to broadband. 

2.  RESEARCH LITERATURE REVIEW

The impact of broadband has been widely studied in the 
economic growth literature, with an important part of that 
research conducted with United States data, due to the 
early network deployments and the extensive availability 
of datasets. 

Lehr et al (2006) were among the first authors to study the 
impact of broadband on several economic variables in the 
US zip-code areas and states. Using regression analysis 
and matching estimators, they found a positive effect of 
broadband on employment, on the number of businesses, 
and on property values. However, they did not observe a 
significant effect on wages. The authors acknowledged 
that endogeneity was a concern, suggesting that future 
research should rely on instrumental variables techniques 
to better control for potential problems deriving from 
omitted variables and reverse causality5. Following this 
study, Crandall et al (2007) provided evidence on the 

economic contribution of broadband for a sample of 48 US 
states, highlighting that the number of accesses per 100 
population stimulated employment and output growth 
between 2003 and 2005, although the positive effect was 
only found to be significant in the service industries. The 
authors argued that since broadband was at an early stage 
of the diffusion lifecycle, that could have prevented an 
accurate measurement of its overall impact on growth. 
The limited economic contribution of broadband in this 
study could also be explained by the lack of control for 
endogeneity of the broadband indicator.  

Since the early 2010s, most researchers on the economic 
impact of broadband have attempted to address the problem 
of endogeneity. For example, Kandilov and Renkow (2010) 
used a difference-in-differences approach combined with 
a matching strategy to analyze the effect of a broadband 
deployment program in US rural areas, concluding that, 
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between 2002 and 2003 the technology had not had yet 
a significant impact on their economic development (as 
measured by employment, payroll, and the number of 
business establishments) possibly because not enough 
time had elapsed for the impact to happen. A more spatially 
disaggregated analysis revealed, however, that a positive 
economic impact of rural broadband was identified in 
communities located closest to urban areas. 

The comparison of the economic performance of 
geographies with different levels of broadband deployment 
but controlling for other characteristics, using the matching 
approach, has also been the strategy followed to estimate a 
causal link in the studies of Whitacre et al (2014) and Ford 
(2018). The first study used US county data between 2001 
and 2010 and concluded that median household income, 
employment, and the number of firms increased faster 
in counties with higher broadband adoption, whereas 
they experienced lower unemployment. In addition, the 
study results suggested that higher download speed was 
associated with less poverty and more creative class 
employment. In turn, Ford (2018) also focused on the local 
economic effects of increasing broadband speed, although 
his results were less positive. Using US county-level data 
for the 2013-2015 period, his study showed that broadband 
services and upgrades were not randomly distributed in 
the territory, which could result in misleading conclusions 
about their economic impact. Once differences in observed 
characteristics between the counties were controlled, the 
study concluded that there was no significant effect of 

higher broadband speed on economic outcomes, including 
jobs, earnings, and total personal income.

Other recent studies conducted for the US at the subnational 
level have also dealt with the endogeneity of the broadband 
indicator in a regression framework. They included 
controls of the differences in observed and unobserved 
characteristics (fixed effects) of the spatial units under 
analysis to minimize the concern about the omitted variables 
bias. In addition, some of these studies used Instrumental 
Variables (IV) to deal with the potential problem of reverse 
causality. For example, Forman et al (2012) used the cost of 
internet deployment, local connections to older networks, 
and a proxy of demand, to identify a positive causal effect 
of investments in advanced internet technologies on wages 
and employment in the US counties from 1995 to 2000. A 
positive contribution was observed only for a reduced 
number of counties, characterized by intensive usage of IT 
and high skills, income, and population density. Similarly, 
Kolko (2012) assessed the impact of broadband availability 
on county employment using an IV estimator, based on 
the average slope of the terrain as an instrument of the 
broadband indicator. The results in this research suggest 
a positive causal effect of broadband on employment, 
although the author acknowledged that IV estimates might 
be upwardly biased. Mack and Rey (2014) showed that 
broadband availability in 2004 stimulated the number of 
knowledge-intensive firms in the counties of 49 of the 54 
US metropolitan areas. The authors combined techniques 
to deal with spatial dependence with an IV estimator that 
used the lagged values of the broadband indicator and the 
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county’s household density. Finally, Mack and Faggian 
(2013) developed a series of spatial econometric models 
that examined the link between broadband provision and 
productivity for US counties. The developed models also 
evaluated the variability in broadband impact related to the 
quality of human capital. The results in this case suggested 
that in general, broadband has a positive impact on 
productivity only in territories with high levels of human 
capital and/or highly skilled occupations. Other studies 
suggest that the availability of high-speed broadband is an 
important determinant of rural firm location (Mack, 2014).

Research conducted recently has begun to provide evidence 
of a positive contribution of high-speed broadband, including 
in rural areas. Using a panel of counties in the state of 

Tennessee, Lobo et al (2020) found that unemployment 
rates are lower in counties where higher-speed services 
(above 100 Mbps) are available, and that effects are larger in 
rural counties. Using a similar panel data strategy, Deller 
et al (2021) found that broadband availability generally 
boosts new business formation in non-metro U.S. counties, 
and that the effect increases with faster broadband speeds 
(above 50 Mbps). 

Overall, the review of the existing literature leads us to 
conclude that the evidence of the causal effect of broadband 
on the economic performance of subnational spatial units 
of the United States indicates results that tend to vary by 
geography, although the contribution appears to be greater 
in recent time periods (see Table 1). 



12

Table 1. Summary of Prior Research Evidence

Time period Research Time frame Effects of broadband

1995-2005

Lehr et al (2006) 2000-2002
Positive effect of on employment, on the number of businesses, and on property values
No significant effect on wages

Crandall et al (2007) 2003-2005 Positive effect on output and employment only in service industries

Kandilov and Renkow 
(2010) 2002-2003 No significant economic development effect in rural areas (measured by employment, 

payroll, and the number of business establishments)

Kolko (2012) 1999-2006 Positive effect of broadband on employment, although estimates might be upwardly 
biased

Mack and Rey (2014) 2004 County broadband availability stimulated the number of knowledge-intensive firms

Forman et al (2012) 1995-2000
Positive effect of Internet investment on wages and employment only for a reduced 
number of counties characterized by intensive usage of IT and high skills, income, and 
population density

2000-2010

Whitacre et al (2014) 2001-2010

Median household income, employment, and the number of firms increased faster in 
counties with higher broadband adoption, and lower unemployment
Higher download speed is associated with less poverty and more creative class 
employment

Mack and Faggian 
(2013) 2000–2007 Positive impact on productivity only in territories with high levels of human capital and/or 

highly skilled occupations

Mack (2014) 2010 The availability of high-speed broadband is an important determinant of rural firm 
location

2010-2015

Ford (2018) 2013-2015 No significant effect of higher broadband speed on economic outcomes, including jobs, 
earnings, and total personal income

Lobo et al (2020) 2011-2015 Unemployment rates are lower in counties where higher-speed services (above 100 Mbps) 
are available, and that effects are larger in rural counties

Deller et al (2021) 2014 Broadband availability generally boosts new business formation in non-metro U.S. 
counties, and the effect increases with faster broadband speeds (above 50 Mbps)

Source: Telecom Advisory Services analysis
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As can be observed in Table 1, there is a lack of studies 
addressing the effects of broadband connectivity covering 
the most recent period, post 2015 which is a period in which 
massive deployment took place across the country. This 

is the area that we intend to focus on in this research. In 
addition, our effort will rely on econometric techniques 
used in recent research to control for endogeneity.

3.  DESCRIPTIVE ANALYSIS: A CORRELATION BETWEEN BROADBAND 
DEVELOPMENT AND ECONOMIC GROWTH

Between 2010 and 2020, the US underwent significant 
economic growth. As noted in Graphic 1, the GDP of the 

United States grew at an average rate of 3.3%, even when 
factoring in the COVID-19 recession. 

Graphic 1. GDP evolution in the United States (2010-2020)
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The steady growth until 2019 is the result of the country’s 
recovery after the 2007-2009 financial crisis. This growth 
trend was interrupted in 2020, because of the crisis generated 
by the COVID-19 pandemic. At any rate, the GDP contraction 
occurred during 2020 (-2%) was relatively modest in 
comparison with that of other advanced economies such as 

the Euro zone (-6.3%), the United Kingdom (-9.8%) or Japan 
(-4.6%).

As for the evolution by state, Figure 1 presents each regional 
economy grouped by octiles according to their respective 
GDP’s Compound Annual Growth Rate (CAGR), with the 
darker colors allocated to the faster growing states. 

Figure 1. GDP growth by US state (CAGR 2010-2020)
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Utah, Washington, California, North Dakota, Idaho, and 
Georgia were the states with the largest growth rates - over 
4% in all cases - well above the national average of 3.3%.   

Other states were found to be in a worse relative position 
at the end of the decade, as they grew below 2% on average. 
Such is the case of Oklahoma, Mississippi, Connecticut, 
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New Mexico, West Virginia, Louisiana, Wyoming, and 
Alaska. This means that the economic evolution has 
not been homogeneous during the past decade, and one 
possible reason behind these variations may be related to 
different adoption pace of high-speed broadband. Another 
important aspect derived from Figure 2 is the presence of 

6	  For 2010 the FCC has not reported as of now state-level data for 25/3 Mbps

certain spatial correlations, where the economic evolution 
of some states may be linked with that of their neighbors. 

In the case of broadband penetration, we report data for 
2020 based on connections of at least 25 Mbps download 
speed per every 100 households6. 

Figure 2. Fixed broadband penetration by US state (2020)
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As indicated in Figure 2, broadband penetration is also 
uneven, with more connected states mostly situated at the 
north-east of the country (New Hampshire, Massachusetts, 
New Jersey, Delaware, or Maryland), exhibiting well above 
80% penetration figures. On the other extreme, broadband 
penetration in New Mexico, Oklahoma, Idaho, Mississippi, 
and Arkansas did not reach 50% of households. In sum, 
important regional disparities also arise in terms of 
broadband diffusion.

7	  Here we use GDP per capita, rather than GDP, for comparison purposes across states.

In order to explore the correlation links between economic 
output and internet adoption, a plot linking current levels of 
GDP per capita7 and broadband penetration is presented in 
Graphic 2, indicating the presence of a specific descriptive 
pattern. When plotting each state with a fractional 
polynomial fit, there seems to be a positive relation, where 
the more connected states are also the richer ones. On 
the other end, Mississippi exhibits the lower figures for 
GDP per capita ($38,445), and the second-lower broadband 
penetration level (40.5%, only above Arkansas).
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Graphic 2. GDP per capita and fixed broadband penetration by US state (2020)
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In sum, the results of the descriptive analysis consistently 
point to a positive link between broadband penetration 
and economic performance. However, it remains to be 
seen if this is link is merely a correlation, or if this relation 

represents a causal direction, and if it remains robust when 
adding control variables which also affect output. This will 
be explored in the next section.
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4.  THEORETICAL MODELS, METHODOLOGIES, AND EMPIRICAL SPECIFICATION

8	  This model was used by a previous study of Jung and López-Bazo (2020) to assess the impact of broadband on economic performance for a sample of Brazilian 
states.

9	  For the empirical estimation, we have made some additional checks by incorporating further time-varying variables to the TFP term, such as R&D intensity, differences 
in industrial mix, and a time-trend to account for exogenous technological shocks. However, most of these variables were found to be not relevant from a statistical 
viewpoint. See the Appendix for a complete discussion.

As stated in the introduction, the objective of the research 
is to estimate the unique contribution of fixed broadband 
to the American economy during the period 2010-2020. The 
methodology to be followed is composed of four models:

1.	 An empirical Ordinary Least-Squares (OLS) model 
derived from Solow’s exogenous model of long-run 
economic growth as driven by capital accumulation, 
labor, and increases in productivity resulting from 
technological progress.

2.	 A Spatial Error Model (SEM) estimated through 
Maximum Likelihood (ML), to account for spatial 
correlation across neighboring states.

3.	 A single - equation IV estimator to control for 
potential reverse causality where rather than being 
a driver of economic growth, broadband adoption 
results from higher level of development.

4.	 A structural four equation model also used to 
control for potential endogeneity but developed 
only as a robustness test because it covers only the 
2016-2020 subperiod.

Each model will be presented in turn.

4.1.  Long-run economic growth model
The empirical model to estimate the impact of broadband 
on regional output in the United States is based on an 
augmented Solow (1956) framework, where economies 
are supposed to produce according to a Cobb-Douglas 
production function with various input factors8:

	  	 [1]

where  represents Gross Domestic Product, K is the non-
telecom physical capital stock, L is labor and HK denotes 
human capital, approximated as , where hk 
reflects the efficiency of a unit of labor, as in Hall and Jones 
(1999). Subscripts i and t denote respectively states and time 
periods. The term A represents Total Factor Productivity 
(TFP), which reflects differences in production efficiency 
across states over time. TFP is expressed as:  

	  	 [2]

Accordingly, TFP is assumed to depend on some state-
specific characteristics, represented by the fixed effect , 
a term capturing time invariant idiosyncratic productivity 
effects, which may make some US states more productive 
per se because of unobserved characteristics9. As it is 
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supposed that internet connectivity contributes to increase 
productivity, A is assumed to depend positively on the level 
of broadband adoption, denoted by BB. Thus, it is expected a 
positive value for , indicating the economic gains derived 
from broadband. Another important aspect that could 
shape the impact of broadband on state productivity is the 
existence of differentials in the quality of connections. To 
approximate quality, following Rohman and Bohlin (2013), 
the measure used is the download speed of connections 
within each state. The moderating effect of the quality of 
connections in a state is hypothesized to be positive, i.e., 

. In other words, for two US states with the same 
relative number of broadband connections, we expect to 
observe a larger economic impact for the region with the 
higher speed.

Inserting equation [2] in [1], we obtain:

	

Applying logarithms for linearization, and after some 
rearrangements, we derive the final empirical specification:

[3]

Where  is a state-level fixed effect. Thus, we 
understand that the evolution of GDP depends on specific 
unobserved state-characteristics, on physical capital 
stock, on labor, on broadband adoption and on the speed 

10	 We have also tested empirically the alternative Spatial Autocorrelation Model (SAR) but reported lower likelihood.

of the connections. This baseline model will be estimated 
through Ordinary Least Squares (OLS).

4.2.  Spatial Error Model
When working with regional data, a potential concern 
derived from models like the one presented in the previous 
section is that they neglect the possible spatial correlation 
across states. As seen before in Figure 2, there seems to be 
evidence of the presence of spatial correlation between the 
economic output of some states and that of their neighbors. 
Ignoring the potential spatial correlation may lead to biased 
and inefficient estimation results.  

To incorporate border externalities to the theoretical 
framework derived in 4.1, we rely on the Spatial Error Model 
(SEM)10, that allows the residuals to be spatially correlated 
(Anselin, 2001; Saavedra, 2000). Following the SEM model, 
the structure of the residuals is:

	 ,

being W a spatial weights matrix. We used as spatial 
weights matrix a first-order contiguity matrix, row-
normalized. The estimation is done through a Maximum 
Likelihood (ML) method.

4.3.  Instrumental Variable model
A common critique of the estimation based on models 
such as those presented in 4.1 and 4.2 is that the results 
for the broadband effect could determine correlation rather 
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than causality because investments in broadband may be 
considered as a driver, but also a result of productivity and 
economic growth (e.g., Cardona et al, 2013). This means that 
both broadband penetration and broadband speed may be 
potentially endogenous. This likely reverse causality may 
arise due to three factors: (i) individuals and firms in high-
income states may also have higher resources to pay for 
broadband, (ii) policy interventions are aimed to stimulate 
deployment and (iii) use of broadband might depend on the 
level of development of each region, and because adoption 
of broadband can run in parallel to other technological 
advances (Czernich, 2011). 

To address these reverse-causality concerns, we will apply 
a single-equation IV estimator using instruments that 
are expected to determine broadband but not the outcome 
variable in a direct way (this was the strategy followed by 
authors such as Czernich et al, 2011; Rohman and Bohlin, 
2012; Forman et al, 2012; Kolko, 2012, Czernich, 2014; Mack 
and Rey, 2014; Ivus and Boland, 2015; and Castaldo et al, 
2018).

4.4.  Structural model
As a second measure to control endogeneity, we estimate 
the effect of interest from a structural multi-equation 
model, as other authors have previously done (Roller and 
Waverman, 2001; Koutroumpis, 2009; Katz and Callorda, 
2018). 

Following Koutroumpis (2009), a 4-equation model, as 
follows in Table 2, is adopted. 

Table 2. System of equations for the 
structural model

Aggregate 
production equation

Demand equation

Supply equation

Broadband 
infrastructure 
production equation

Source: Telecom Advisory Services analysis

The aggregate production function is the same as that 
exposed in equation [3]. The demand equation endogenizes 
broadband penetration, stating that is a function of income 
(GDP per capita), the price of the service, education level 
(HK), and the percentage of the population that lives in 
densely populated areas (URBAN). The supply equation 
links the industry output with prices and the level of inter-
platform competition in the broadband market (number 
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of operators every 100,000 inhabitants). In our case, we 
will proxy sectorial output with revenue, rather than 
investment as done by Koutroumpis (2009). The reason is 
that there is not a reliable state-level broadband CAPEX 
series estimate for the US covering the considered period. 
Finally, the infrastructure production equation states that 
the annual change in broadband penetration is a function 
of the industry revenue11. 

11	 Koutroumpis (2009) also adds R&D intensity and regulation (local loop unbundling) as determinants in the demand and supply equations, respectively. However, we 
understand that those regressors are suitable to explain demand and supply patterns in a cross-country context, but not for regional analysis as ours, as R&D is not 
necessarily a suitable indicator for regional disparities (see Appendix) and regulation is uniform for the whole country.

12	 However, speed differentials remain exogenous, as the Koutroumpis (2009) framework does not account for it.

In sum, as stated by Koutroumpis (2009), this system 
of equations effectively endogenizes broadband 
infrastructure12 because they involve the supply and 
demand of broadband infrastructure. All equations include 
state-level fixed effects, and the empirical approach 
followed is three-stage least squares (3SLS) simultaneous 
equation estimate. Due to data limitations in most variables 
included in the secondary equations, the structural model 
could only be estimated for the subperiod 2016-2020. For 
this reason, it will be only used as a robustness test of the 
prior models.
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5.  DATASET

13	 78.4% of fixed broadband connections were of at least 25 Mbps downstream by June 2019, according to the Internet Access Service report.

To estimate the equations detailed in the previous section, 
we built a panel covering the US states during period 2010-
2020. Table 3 details the sources and descriptive statistics 
for the variables compiled. 

The main economic indicators collected at the state-level 
are sourced from the Bureau of Economic Analysis (BEA) 
dataset. That is the case for GDP and Labor. For physical 
capital stock, the BEA only reports national data. Therefore, 
to build state-level estimates we followed Garofalo and 
Yamarik (2002) who, for each economic sector, apportion 
the national estimate by the relative income generated by 
state. Each state capital stock is then the sum of the industry 
estimates, excluding the economic sector “Broadcasting 
and Telecommunications” to avoid overlapping information 
with the broadband penetration variable. As for human 
capital, defined as the share of population 25- to 64-year-
olds with tertiary education, the data comes from the 
OECD regional database. As human capital data for 2020 

is missing, we extrapolated the estimates for that year 
following each state annual compound growth rate in that 
indicator.

As for broadband variables, we rely on the official FCC 
broadband standard: household penetration levels for 
connections above 25 Mbps of download speed. However, 
data for this speed threshold at the state-level is only 
reported by the FCC since 2014, so for the years between 
2010 and 2013 we imputed values based on the last 
observable data by state (2014) and national-level growth 
rates 2010-2013 for that speed tier. For 2020, the FCC has not 
yet reported state-level data, so we applied to 2019 figures 
the growth rate of overall fixed broadband for 2020 by 
state according to the American Community Survey (ACS). 
Considering that already in June 2019 nearly 80% of all 
fixed broadband connections are within the selected speed 
tier13, this seems to be a feasible procedure to extrapolate 
2020 state-level data.
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Table 3. Variables and descriptive statistics

Code Description Mean Obs. Source

Main equation variables

GDP Gross Domestic Product in millions of 
current dollars 

366,834.5
[453,797.3]

539 Bureau of Economic Analysis

K

Current-Cost Net Stock of Private Fixed 
Assets (excluding Broadcasting and 
Telecommunications) in billions of 
current dollars

826.304
[1,038.366]

539 Built with data from the Bureau 
of Economic Analysis

L Total Full-Time and Part-Time 
Employment

3,812,162
[4,144,528]

539 Bureau of Economic Analysis

HK Share of the population 25-64 with 
tertiary education

41.745
[6.664]

539 OECD Regional Statistics

BB
Fixed Broadband connections offering 
at least 25 Mbps down, every 100 
households

38.987
[25.729]

539
FCC Internet Access Services 
reports/ American Community 
Survey (ACS)

Speed Average maximum available download 
speed (Mbps)

607.388
[291.685]

294 Technology Policy Institute

Instruments for IV estimate

Telephone penetration 1912-
1922

Number of telephones, for all systems 
and lines, per person from 1912 to 1922

0.107
[0.049]

539 Census of telephones, 
Department of Commerce

Wire per km2 1912-1922 Miles of wire, for all systems and lines, 
per km2 from 1912 to 1922.

33.120
[177.018]

539 Census of telephones, 
Department of Commerce

Daily telephone calls 1912-1922 Daily calls by telephone from 1912 to 
1922

6.428
[1.712]

539 Census of telephones, 
Department of Commerce

Additional variables for the structural model

Price Average price for commercial plans 
offering at least 25 Mbps down

89.584 
[17.010]

220 FCC

Operators Number of fixed broadband operators 
every 100,000 inhabitants

2.570
[1.929]

343 FCC form 477

Revenue Calculated as: average price*total 
broadband connections (in million USD)

168.460
[178.351]

227 Built from FCC and ACS data

Urban Percentage of population living in urban 
areas.

0.749
[0.147]

539 U.S. Census Bureau

Source: Telecom Advisory Services analysis
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As for broadband speed, the FCC does not report average 
levels by state, only penetration levels by speed intervals, 
which in turn, vary over time. Therefore, we relied in the 
variable of average maximum available download speed 
(Mbps), provided by the Technology Policy Institute (TPI). It 
is important to consider that this is not real data of average 
speeds. First, because it is based only on advertised speeds 
(from the FCC form 477). Second, because it is an average 
calculated over maximum values. For that reason, this 
indicator should be better interpreted as the availability 
of high-speed offers. Since this data is only available from 
2015 onwards,  by transforming it into dummy variables by 
speed tiers we were able to expand the data set to the whole 
period 2010-2020. As presented in the Table 4, for the first 
year of data availability (2015), the mean speed was 194.408 
Mbps, while the maximum value reached was 352 Mbps 

(Utah). For the following years, the average, minimum 
and maximum values always increase, which means that 
for the previous years (2010-2014) those figures must have 
reached smaller values than in 2015. This is reasonable, as 
broadband speed is ever increasing due to the introduction 
of FTTx and DOCSIS advancements in the distribution. As 
a result, for years before 2015, we can safely expect that no 
state reached an average maximum available download 
speed of 400 Mbps (as the maximum value in 2015 is 352 
Mbps). Thus, we can build a dummy dataset taking values 
of 1 when a state reaches a speed ranging from 400 Mbps 
to 850 Mbps (something that only happens after 2015), and 
another dummy variable for states reaching speeds of 850 
Mbps, or above. Both dummy variables take the value of 
zero for the period 2010-2014.
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Table 4. Descriptive statistics for Speed variable (Mbps)

Year Mean Min Max States reaching 400-
850 States reaching > 850

2015 195.408 58 352 0 0

2016 392.796 80 797 20 0

2017 588.000 184 980 31 6

2018 774.102 395 982 30 18

2019 833.408 537 986 25 24

2020 860.612 611 995 17 32

Source: Technology Policy Institute

The threshold of 400 Mbps was chosen as it is the first “safe” 
round value that allows us to extrapolate the data back to 
2010. The threshold of 850 was chosen as it represents the 
top quartile of the sample available by the TPI data. Only 6 

states reached that high-speed figure in 2017, a number that 
progressively increased to 18, 24 and 32 in 2018, 2019 and 
2020, respectively. 

6.  ESTIMATION RESULTS

The estimation results are reported according to the models 
reviewed in sections 4.1, 4.2, 4.3, and 4.4.

Table 5 reports the estimated results for the empirical 
specification presented in equation [3], following the OLS 
method. The data sample includes 49 states between 2010 
and 2020. We exclude from the analysis the states of Alaska 
and Hawaii for which there is no complete information on 
the broadband variable. All estimates include state-level 
fixed effects and robust standard errors, clustered by state. 

We start by estimating a baseline model without considering 
the differential effect from speed (that is to say, assuming the 
restriction  ). Results presented in column (i) exhibit 
the expected results: positive and significant coefficients for 
Capital, Labor, and Human Capital. This means that all three 
factor inputs have contributed to the growth of US states 
during the period 2010-2020. As for broadband penetration, 
the coefficient is positive and highly significant, meaning 
that a 10% increase in broadband penetration is associated 
with 0.04% growth in GDP.
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In column (ii), we present the estimates by considering 
differentials in broadband speed, relying on dummy 
variables for speed thresholds of 400-850 Mbps and above 
850 Mbps. In this case, the results present clearly different 
economic impact according to speed thresholds: for the 
cases of speed below 400 Mbps, the impact of increasing 
in 10% the broadband penetration is 0.06%; for those states 
reaching speeds between 400 and 850 Mbps, the impact is 
0.08% (0.06% as for all connections, plus 0.02% for this specific 
speed tier), while for those states enjoying the larger speeds 
(above 850), the economic impact is 0.11% (0.06%+0.05%). The 
increasing economic impact of broadband speed has been 
identified in prior research and labeled “return to speed” 
(Briglauer and Gugler, 2018; Carew et al, 2018; Kongaut and 
Bohlin, 2014; Lobo et al, 2019; Hasbi, 2017; Katz and Callorda, 
2020).

To minimize any potential concern related to omitted 
variable bias, in addition to the production inputs we 
included in the specification a set of time-varying regional 
controls (R&D intensity, industrial mix) as well as temporal 
effects. The reason to consider these additional variables 
is that they could be associated to each region’s output 
and, at the same time, correlate with broadband use. These 
additional variables were found to be non-significant in 
most estimates (see detailed discussion in Appendix). 
Furthermore, the panel structure of the data set for the US 
states allows us to control for time-invariant unobserved 
regional characteristics, by the inclusion of state fixed 
effects. As a result, the pernicious influence of confounding 
factors omitted in the specification (e.g., the effect of 
geography and differences across regions in managerial 
talent that evolves smoothly over time) is less of a concern 
in our empirical exercise.
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Table 5. Economic Impact of Broadband – Fixed Effects OLS estimate

Dep. variable: 

Complete sample
2010-2020 

Excluding DC
2010-2020

Complete sample
2014-2019

(i) (ii) (iii) (iv) (v) (vi)

0.516*** 0.481*** 0.512*** 0.478*** 0.596*** 0.557***

[0.030] [0.028] [0.029] [0.028] [0.067] [0.065]

0.641*** 0.644*** 0.644*** 0.648*** 0.605*** 0.587***

[0.052] [0.053] [0.052] [0.054] [0.123] [0.115]

0.005*** 0.003* 0.005*** 0.003* 0.003 0.001

[0.001] [0.001] [0.001] [0.002] [0.002] [0.002]

0.004*** 0.006*** 0.004*** 0.006*** 0.010** 0.009**

[0.001] [0.001] [0.001] [0.001] [0.005] [0.004]

0.002*** 0.002** 0.002

[0.001] [0.001] [0.001]

0.005*** 0.005*** 0.004*

[0.002] [0.002] [0.002]

Fixed effects by State YES YES YES YES YES YES 

R2 (within)
Observations

0.97
539

0.97
539

0.97
528

0.97
528

0.94
294

0.95
294

Estimation method OLS OLS OLS OLS OLS OLS

Note: Robust standard errors in parentheses. *p<10%, **p<5%, ***p<1%. 
Source: Telecom Advisory Services analysis
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Next, to check if our results are influenced by the outlier 
nature of Washington, DC, we replicated the previous 
estimates excluding this spatial unit from the sample. 
The results, represented in columns (iii) and (iv) of Table 
5, are almost identical to those of the complete sample. 
This means that the inclusion of the District of Columbia 
does not bias the results; consequently, we will include 
these observations in the remaining analyses. In addition, 
another potential concern could be that a subset of the 
broadband dataset was extrapolated (estimated) from real 
data (broadband penetration figures for 2010-2013 and for 
2020), as explained above in section 5. Thus, to check if 
these extrapolation techniques are biasing the results, we 
replicated the previous estimates but only for the period 
of “real” data available, 2014-2019. Results for broadband 

penetration coefficients (0.010 in (v) and 0.009 in (vi)) 
are larger than for the complete sample showing that 
using extrapolated data to cover the whole period is not 
artificially inflating the economic impact. In fact, if any 
bias is generated by including extrapolated observations, 
it might be a downward one. Nevertheless, this may be a 
hasty interpretation, as it is reasonable to expect a larger 
economic impact for the subperiod estimated, given that 
25 Mbps broadband penetration figures for 2010-2013 were 
modest. To sum up, we do not foresee any methodological 
problem in continuing the analysis for the complete period 
2010-2020.

For the remaining estimates (reported in Table 6), we rely 
on different empirical strategies beyond OLS, as described 
above in section 4.
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Table 6. Economic Impact of Broadband – Fixed Effects additional estimates

Dep. variable: 

Spatial Error Model
(2010-2020)

Instrumental Variables 
(2010-2020)

Structural model
(2016-2020)

(i) (ii) (iii) (iv) (v) (vi)

0.488*** 0.479*** 0.462*** 0.387*** 0.444*** 0.399***

[0.045] [0.043] [0.029] [0.041] [0.028] [0.032]

0.699*** 0.694*** 0.511*** 0.609*** 0.633*** 0.606***

[0.080] [0.080] [0.054] [0.052] [0.038] [0.038]

0.004*** 0.004** 0.001 -0.003 0.001 -0.000

[0.001] [0.001] [0.001] [0.002] [0.001] [0.001]

0.005** 0.005** 0.022*** 0.016*** 0.125*** 0.139***

[0.003] [0.003] [0.005] [0.003] [0.014] [0.015]

0.001* 0.009*

[0.001] [0.005]

0.002* 0.017*** 0.002***

[0.001] [0.005] [0.001]

Dep. variable: 

-0.082** -0.070*

[0.038] [0.038]

0.979*** 0.987***

[0.324] [0.323]

2.001*** 2.022***

[0.187] [0.185]

3.846*** 3.709***

[1.336] [1.311]
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Dep. variable: 

0.370*** 0.372***

[0.068] [0.068]

0.077 0.076

[0.072] [0.072]

Dep. variable: 

-0.295*** -0.295***

[0.060] [0.060]

Lambda 
0.554***
[0.054]

0.532***
[0.049]

Under identification test 36.994*** 6.782***

Hansen J statistic 0.761 Exactly 
identified

Fixed effects by State YES YES YES YES YES (𝜒) YES (𝜒)

R2 (within)
Observations

0.97
539

0.97
539

0.95
539

0.96
539

0.99
219

0.99
219

Estimation method ML ML 2SLS 2SLS 3SLS 3SLS

Note: Robust standard errors in parentheses for estimates (i) to (iv). Standard errors in parenthesis for estimates (v) and (vi). *p<10%, **p<5%, 
***p<1%. (𝜒) State-level fixed effects included in all the equations of the model.
Source: Telecom Advisory Services analysis
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In columns (i) and (ii) of Table 6 we consider the possible 
presence of border externalities, something that was already 
pointed out above when analyzing spatial correlation. As 
described above, ignoring the potential spatial correlation 
may conduct to biased and inefficient estimation results.  For 
that purpose, we rely on the Spatial Error Model, estimated 
through the Maximum Likelihood approach. Results are 
similar as in the OLS estimate, although the higher-speed 
interaction seems to reach a smaller coefficient than in the 
former, and its significance is only 10%. 

As in previous studies of the impact of ICT in general, 
and broadband in particular, reverse causality can be 
considered as a potential concern. To take into account this 
source of endogeneity, we estimate the IV model in columns 
(iii) and (iv) of Table 6. To select the instrument set for the 
IV model, we followed the IV selection rationale provided 
by Czernich et al (2011) and Bertschek et al (2013), which 
state that a large portion of broadband deployments rely on 
the wire of pre-existing networks. The required access to 
an existing infrastructure built for other purposes, makes 
it a suitable instrument for this estimation strategy. In 
our study, the instrument for broadband penetration is the 
number of voice-telephony fixed access lines per inhabitant 
and the miles of wire per square kilometer in each US state 
during period 1912-1922 (data extracted from historical 
census of telephones by the Department of Commerce). 
Our assumption is that the infrastructure of previous 
telecommunication technologies determines the spatial 
diffusion of current technologies because legacy networks 
made the deployment of broadband less costly. Although 

it was not deployed with this aim, traditional voice fixed 
access lines in the US states can condition the current 
broadband connections. 

As a result, we are using two variables (lagged voice 
telephony access lines and miles of wire per square km) to 
instrument one potential endogenous variable (broadband 
penetration). Even if it is not strictly necessary to have 
more instruments than endogenous variables (using only 
one instrument might have been enough), we preferred to 
use two (as in Czernich et al, 2011), considering that this 
allows the possibility of checking the exogeneity of the 
instrument set, through the overidentification test. If we 
were using only one instrument, the system would have 
been exactly identified, thus not being possible to confirm 
its exogeneity, as we have done.

However, when including speed differences in column 
(vi), the previous instrument set is not enough. Even 
if the information provided by both instruments cited 
above is suited to explain current speed differentials, 
the model cannot be estimated empirically because 
the system is under-identified (as we have a smaller  
number of instruments -2- than that of endogenous 
variables -3-). Therefore, for the system to be specified, we 
needed to include a third instrument. For this purpose, 
we decided to choose a metric potentially linked to speed 
variations, relying on an intensity-of-use indicator for  
the same lagged period (1912-1922): the average daily 
telephone calls. 
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To sum up, the assumption is that conditioned to the 
included set of time-variant and time-invariant state 
characteristics, the lag of traditional technologies in the 
state does not affect current economic output in a direct 
way, but only through its influence on the deployment 
of the newer technology. The instruments are lagged 
considerably (almost 100 years) to break any possibility of 
being affected by contemporary shocks that also impacted 
economic output. Results, reported in columns (iii) and (iv) 
of Table 6, confirm the direction of the economic impact 
estimated in the previous approaches. Moreover, the 
coefficients associated with broadband penetration and 
speed increase considerably, suggesting that the potential 
presence of endogeneity may be biasing down the economic 
effect of this technology. In addition, the overidentification 
test carried out for the estimate of column (iii) verifies the 
exogeneity of the instruments.

Finally, columns (v) and (vi) of Table 6 present the results 
for the structural model. The results for coefficients 
associated to capital and labor are like those from the 
previous estimates, while human capital loses significance. 
However, the economic impact for broadband in this case 
yields in a higher coefficient, suggesting that a 10% increase 
in broadband penetration drives a 1.25% increase in output 
(as indicated in column (v)). The reasons behind this 
increased effect can be, at least, three. First, the estimates 
refer to a subperiod of wider deployment of 25 Mbps 
networks. These connections were very limited in 2010, as 
it was its economic impact at the beginning of the period. 
Second, this is a subperiod of much higher internet speeds. 

As the impact of this technology depends on its speed level, 
it seems reasonable to estimate a higher effect when the 
average speed is much larger. Finally, as seen before in the 
IV model, estimation strategies conducted to control for 
endogeneity sometimes result in increased coefficients, 
as neglecting this concern usually leads to bias down the 
results.

As for the secondary equations, the estimated coefficients 
are in line with the expected results. Broadband demand 
depends negatively on service price, while taking larger 
values for more educated, urban, and richer states. On the 
other hand, sector output (Revenue) is positively influenced 
by prices, although the competition intensity (number of 
operators for every 100,000 inhabitants) is not significant

In column (vi) of Table 6 we replicate the previous estimate 
but allowing for different impact according to speed level. 
Considering that in the subperiod 2016-2020 nearly 83% 
of the observations already presented average maximum 
speeds above 400 Mbps, we include only the dummy 
associated to the 850 Mbps threshold, that identifies the 
top quartile of the speed distribution. Results are in line 
with the expected ones: a positive impact of broadband  
on GDP, that increases for those cases of average speeds 
above 850 Mbps.
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7.  ESTIMATING FIXED BROADBAND CONTRIBUTION TO ECONOMIC GROWTH

To estimate the contribution of each factor to economic 
growth, we first need to select the coefficient set from the 
estimated regressions presented in Tables 5 and 6. For 
that purpose, we will compare the results only of those 
regressions that include speed differentials and cover the 

complete period 2010-2020 (to generate a complete picture 
of what happened over the whole period): Column (ii) from 
Table 5 (OLS), Column (ii) from Table 6 (SEM), and Column 
(iv) from Table 6 (IV). These coefficients are summarized in 
Table 7.

Table 7. Coefficients considered for growth accounting estimation

Model OLS SEM IV
Average

Reference Column (ii) Table 5 Column (ii) Table 6 Column (iv) Table 6

0.481 0.479 0.387 0.449

0.644 0.694 0.609 0.649

0.003 0.004 0.000 0.002

0.006 0.005 0.016 0.009

0.002 0.001 0.009 0.004

0.005 0.002 0.017 0.008

Advantages Better fit (R-sq=0.972) Accounts for spatial 
correlation Accounts for endogeneity

Disadvantages
Does not account for 
endogeneity or spatial 
correlation

Does not account for 
endogeneity

Does not account for spatial 
correlation

Source: Telecom Advisory Services analysis

The selection of a specific estimation is not an easy task, as 
each of the estimates reported in Table 7 has pros and cons. 
The OLS estimate does not control for spatial correlation 

or for endogeneity between broadband and GDP, but it 
remains the estimate that provides the better fit. On the 
other hand, the SEM model accounts for spatial correlation, 
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but neglects the potential endogeneity as discussed above. 
Finally, the IV estimate controls for endogeneity, but does 
not address the spatial correlation concerns. Considering 
that there is not a single obvious choice, we will choose to 
carry on relying on the average coefficients estimated (last 
column of Table 7). Thus, the average coefficients are then: 

 and 
. By relying on these average coefficients, and in 

the empirical specification represented in equation [3], we 
get, after some rearrangements:

where the growth rate of GDP can be decomposed in different 
terms, to estimate the relative contribution of each item 
to economic growth. Graphic 3 presents the accumulated 
growth since 2010, as explained by the different sources. 
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Graphic 3. Sources of GDP growth 2010-2020
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The starting point is the US 2010 GDP: $15,048,970 million. 
As observed in Graphic 5, the main contributor to GDP 
growth since that year has been the capital deepening 
process, with important investment levels that increased 
considerably the physical capital stock of the economy. 
Labor has also been an important contributor, as reflected in 
the evolution of the unemployment rate, from 9.6% in 2010 to 
3.7% in 201914. On the other hand, the change in skills level 
of the workforce was not among the main contributors, 
possibly because the American population had already 
reached a high educational level by 2010. After capital and 

14	 Source: IMF

labor, the expansion of fixed broadband networks and the 
speed improvement emerge as crucial sources of growth.

Table 8 presents the accumulated growth by source, 
explaining the GDP gap from 2010 to 2020 values (all figures 
in current dollars). Again, physical capital is the main 
contributor, explaining 56.2% of the accumulated growth 
occurred during the period. Following capital, labor drives 
16.8% of the growth. Fixed broadband expansion explains 
10.9%, while speed improvements drives an additional 11.5%. 

Table 8. United States: Decomposition of GDP growth 2010-2020

Segment USD (million) As % of accumulated 
growth As % of 2020 GDP

GDP 2010 15,048,970

Accumulated 
growth 2010-2020

Explained by Physical Capital (K) 3,287,035 56.2% 15.7%

Explained by Labor (L) 981,928 16.8% 4.7%

Explained by Human Capital (hk) 260,316 4.5% 1.2%

Explained by Broadband (BB) 635,402 10.9% 3.0%

Explained by Broadband Speed Increases 673,722 11.5% 3.2%

Residual (not explained by model) 6,373 0.1% 0.0%

GDP 2020 20,893,746

Source: Telecom Advisory Services analysis
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According to Table 8, if broadband adoption and speed had 
stayed unchanged since 2010, the GDP of the United States 
in 2020 would have been $19,584,622 millions, rather than 
the current level of $20,893,746 millions. The difference 
between both figures is what can be called the broadband 
contribution: $1,309,124 millions, a figure equivalent to 
6.27% of 2020 GDP. In per capita terms, GDP would have been 
$59,481 rather than $63,457, almost $4,000 annual dollars 
less for the average American. 

The same growth accounting exercise was done by state. 
Graphic 4 represents the kernel density function for three 
state-level series: the GDP per capita in 2010, the GDP per 
capita in 2020 (actual), and the GDP per capita in 2020 had 
broadband stayed in 2010 levels (in terms of adoption and 
speed). The GDP per capita growth would have been much 
lower without broadband improvement, as the distribution 
of the 2020 counterfactual series is clearly situated at the 
left of the actual one.
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Graphic 4. Kernel Density function for GDP per capita scenarios
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Finally, Graphic 5 depicts the average GDP per capita by state 
according to the three scenarios: 2010, 2020 (actual), 2020 
had broadband stayed at 2010 levels (in terms of adoption 

and speed). While broadband has generated a positive 
economic contribution in all states, some differences 
emerge. 

Graphic 5. GDP per capita by state under different scenarios
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The contribution of broadband to GDP per capita has not 
been uniform by state, resulting in a higher impact in those 
states where adoption and speed evolved at a faster pace. 
The states where the biggest impact is achieved are Maine 
and Ohio, where 2020 GDP per capita would have been 7.9% 
and 7.8% (respectively) below 2020 levels had broadband 
stayed in 2010 levels. Beyond Ohio, other states also 
were big benefiters, such as North Carolina (7.6%), South 
Carolina (7.3%), Texas (7.2%) and Delaware (7.1%). On the 
other end, West Virginia was benefited less by broadband 

improvements, as the GDP per capita would “only” be 5% 
below current level had broadband stayed at 2010 level, 
followed by Montana (5.1%), Oklahoma (5.1%), and Wyoming 
(5.2%). The case of Wyoming is particularly interesting, 
as this state experienced a contraction in its GDP per 
capita during the period, being 2020 figures lower than 
2010. Broadband contributed to mitigate this contraction, 
as 2020 GDP per capita would have been even lower have 
connectivity stayed in 2010 levels.
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8.  ESTIMATING FIXED BROADBAND CONTRIBUTION TO CONSUMER SURPLUS

15	 Source: ITU
16	 Source: World Bank
17	 ITU reports data for a 5GB fixed broadband basket as percentage of Gross National Income per capita (GNI pc). By applying that percentage to annual GNI pc data 

provided for the US by the World Bank, we were able to estimate the annual price for a fixed internet connection. 

To calculate the consumer surplus generated by broadband 
during the period 2010-2020 in the United States, we 
estimate a national-level linear demand function for 
broadband connectivity. With the coefficients estimated in 
the broadband impact equation, the demand function can 
be expressed as:

Where BB represents the quantity of broadband 
connections15, Income is measured through GDP per capita16 
and Price is the average annual cost of a fixed internet 
plan17. As expected, broadband demand depends positively 

on Income, and negatively on its own price, thus behaving 
as a normal good. 

Rearranging, we can get the inverse of the demand function: 

Where  represents the maximum 
price that the market is willing to pay for a broadband 
connection. Above that maximum price, there is no demand 
for broadband. The consumer surplus is then calculated as 
the area below the demand function and above the actual 
price, as highlighted in Graphic 6.
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Graphic 6. Calculation of consumer surplus from broadband

Pr
ic

e

Max	Price

Actual Price

Total Broadband

Broadband
0

Source: Telecom Advisory Services

The consumer surplus is then calculated as the area of the 
highlighted area:

The calculation must be made on a year-by-year basis, 
as the maximum price that consumers are willing to pay 
varies depending on income. Considering that a broadband 

subscription is a normal good, with higher income, the 
more the amount consumers will be willing to pay for 
it. In other words, the demand function exhibited shifts 
to the right every time the consumers income increases 
(Graphic 7), resulting in additional broadband demanded 
for a same price, and increasing the consumer surplus, now 
represented by the sum of areas A+B.
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Graphic 7. Consumer surplus from broadband
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Naturally, actual prices also vary over the time, again 
reinforcing the need to estimate consumer surplus on a 
yearly basis. 

Table 8 summarizes the calculated surpluses for years 2010 
to 2020. Income per capita increased for all the years of 
the sample (except for 2020), something that progressively 

shifted the demand curve to the right, resulting in bigger 
surplus. The difference between the maximum price 
the individuals are willing to pay, and the actual prices 
increases steadily during the period, thus increasing the 
consumer surplus. 
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Table 8. United States: consumer surplus for broadband connections

# Concept 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Source

1 Max Price $2,171.2 $2,305.3 $2,468.2 $2,610.7 $2,794.8 $2,966.5 $3,076.2 $3,274.0 $3,553.9 $3,763.8 $3,604.1 Demand 
function

2 Actual Price $240.3 $244.2 $186.0 $201.2 $198.4 $203.6 $482.8 $630.2 $512.7 $529.0 $516.9 ITU

3
Internet 
connections 
(M)

84.52 88.32 92.51 96.03 97.81 102.21 105.71 108.20 110.76 114.27 120.53 ITU

5
Annual 
surplus ($ 
million) 

$81,598 $91,015 $105,572 $115,692 $126,978 $141,201 $137,083 $143,031 $168,417 $184,820 $186,052  ((1)-
(2))*(3)/2

Source: Telecom Advisory Services

The number of broadband connections increased 
significantly during the period, from 84.5 million 
subscriptions in 2010 to 120.5 million in 2020. This increase  
yielded an aggregated consumer surplus at national level 
reached $81.6 billion in 2010, increasing to over $186 billion 
in 2020.

The previous calculation implicitly assumes that every 
internet connection is a homogeneous good, with only 
annual changes in demand being explained by income 
variations. That said, internet connections are not 
homogeneous, as the quality of the service increases over 
the time as consumers are able to enjoy more reliable and 
faster connections, which means that additional surplus is 

generated by the consumers when better connections are 
available.

To account for the additional surplus generated by speed 
increases, we surveyed existing research literature in this 
field. Most studies of consumer surplus derived from faster 
broadband speed are based on primary research, where 
users stipulate the amount they would be willing to pay 
for broadband service (Savage et al, 2004; Greenstein and 
McDewitt, 2011; Liu et al, 2017). Other studies of broadband 
speed consumer surplus focus the assessment on how 
consumers react to variations in price according to their 
data usage. For example, Nevo et al (2016) studied hour-
by-hour Internet usage for 55,000 US subscribers facing 
different price schedules. They concluded that consumer 
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surplus for speed is heterogeneous. Consumers will 
pay between $0 to $5 per month for a 1 Mbps increase in 
connection speed, with an average of $218. In addition, they 
stipulated that, with the availability of more content and 
applications, consumers will likely increase their usage, 
implying greater time savings and a greater willingness to 
pay for speed. At the time of their research, the increase in 
willingness to pay at high speeds dropped by approximately 

18	 Heterogeneity in willingness to pay for broadband was also highlighted by Rosston et al (2010). 
19	 This is confirmed by a more recent study. Liu et al (2017) administered two national, discrete choice surveys of US consumers to measure households’ willingness-

to-pay for changes in price, data caps, and speed.

$0.11 per Mbps19. The authors found that the valuation of 
bandwidth is highly concave, with lesser added value 
beyond 100 Mbps. As reported in this study, US households 
are willing to pay about US $2.34 per Mbps ($14 total) 
monthly to increase bandwidth from 4 Mbps to 10 Mbps, 
US $1.57 per Mbps ($24) to increase from 10 to 25 Mbps, and 
US $0.02 per Mbps (US $19) for an increase from 100 Mbps to 
1000 Mbps (see Graphic 3).

Graphic 3. Log Curve of relationship between broadband speed and consumer surplus (based on 
Nevo et al, 2016)

y = 27.206ln(x) + 25.852
R² = 0.9998
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Sources: Nevo et al (2016); Telecom Advisory Services analysis

Relying in the parameters estimated by Nevo et al (2016), we 
calculated the additional consumer surplus generated by 
the average speed improvements materialized since 2010 

according to the data provided by Ookla/Speedtest. Table 9 
summarizes the results.
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Table 9. United States: consumer surplus for broadband speed increases since 2010

# Concept 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Source

1
Fixed BB 
speed 
(Mbps)

10.03 12.37 15.41 20.62 29.96 41.74 58.15 77.48 109.63 133.93 177.84 Ookla

2 Delta   2.33 3.04 5.22 9.33 11.78 16.41 19.33 32.16 24.30 43.91 (1)-L.
(1)

3

Additional 
Monthly 
Consumer 
surplus

  $48.89 $56.11 $70.79 $86.62 $92.95 $101.97 $106.43 $120.27 $112.65 $128.75 Nevo 
Curve 

4

Additional 
Yearly 
Consumer 
Surplus

  $586.67 $673.38 $849.48 $1,039.44 $1,115.40 $1,223.66 $1,277.11 $1,443.29 $1,351.77 $1,544.98 (3)*12

5
Internet 
connections 
(M)

  88.32 92.51 96.03 97.81 102.21 105.71 108.20 110.76 114.27 120.53 ITU

6
Annual 
surplus ($ 
million)

  $51,813 $62,297 $81,577 $101,668 $114,008 $129,358 $138,183 $159,853 $154,466 $186,218 (4)*(5)

Source: Telecom Advisory Services

Considering the significant improvements in average speed 
(the average for fixed broadband evolved from 10.03 Mbps in 
2010 to 177.84 Mbps in 2020), this increases in connection 
quality yielded important gains in terms of consumer 
surplus: from $51.8 billion in 2011 to $186.2 billion in 2020.

In Graphic 4 we compare the evolution of consumer 
surplus derived from both broadband connections and 
from speed gains, relying on the calculations presented in  
Tables 8 and 9.
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Graphic 4. United States: consumer surplus generated since 2010 from broadband connections and 
speed increases (in USD million)
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20	 For diminishing consumer surplus as determined by declining network effects, see Eisenmann et al (2006).

By considering the shape of both curves, it seems clear 
that the relative weight of speed improvements over the 
total consumer surplus increases considerably. This may 
be explained by the decreasing network effects generated 

once a certain threshold of internet penetration is reached. 
After that point, additional people connected yields lower 
surplus20, and the larger source of consumer satisfaction 
comes from larger connectivity speeds.
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APPENDIX – ADDITIONAL CONTROLS
In order to avoid the possibility of any omitted variable 
bias, we conducted further checks with additional controls. 
Beyond the variables that arise from the theoretical model 
presented above, we tested in the specification a set of time-
varying regional controls, such as temporal effects, R&D 
intensity and industrial mix. To account for R&D intensity 

we include a variable of R&D spending as a share of GDP 
(data from the National Science Foundation). To control 
for differences in the productive structure, we introduce 
variables that account for share of agriculture and industry, 
respectively, in the regional GDP (data from BEA). Results 
are presented in Table A.1. 

Table A.1. Economic Impact of Broadband – Fixed Effects OLS estimate with additional  
control variables

Dep. variable: (i) (ii) (iii) (iv) (v) (vi)

0.485*** 0.539*** 0.509*** 0.492*** 0.471*** 0.512***

[0.042] [0.046] [0.053] [0.041] [0.043] [0.031]

0.655*** 0.586*** 0.586*** 0.682*** 0.716*** 0.651***

[0.049] [0.093] [0.093] [0.097] [0.100] [0.055]

0.003** 0.005*** 0.003** 0.003** 0.002* 0.005***

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

0.003** 0.004*** 0.002* 0.006*** 0.006*** 0.004***

[0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Time-trend
0.003 0.003

[0.002] [0.002]

Year 2020 dummy
-0.009 -0.012

[0.007] [0.007]

0.010 0.013

[0.013] [0.013]
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-0.029* -0.021

[0.016] [0.015]

-0.014

[0.009]

Fixed effects by State YES YES YES YES YES YES

R2 (within)
Observations

0.97
539

0.97
539

0.98
539

431
0.97

431
0.97

539
0.97

Estimation method OLS OLS OLS OLS OLS OLS

Period covered 2010-2020 2010-2020 2010-2020 2010-2018 2010-2018 2010-2020

Note: Robust standard errors in parentheses. *p<10%, **p<5%, ***p<1%. 
Source: Prepared by the authors

These additional variables were found to be non-significant 
in most estimates (see columns (i) to (vi) in Table A.1. This 
means that the selected variables introduced in Table 3 of 
the main text are suitable enough to explain the variance 
in output. In (i) we introduce a time-trend, to account for 
any exogenous technological growth affecting the country, 
however, it was found to be non-significant. The same 
when we introduce a 2020 dummy to absorb the exogenous 
shocks occurred that year, in column (ii). This may be 
explained as the COVID effects occurred during 2020 varied 
substantially by state. In (iii) we introduce both temporal 
variables together, again being no significant. In column 
(iv) we introduce the R&D intensity as regressor, being not 
significant. While it may seem surprising that R&D intensity 
was found to be non-significant, this may be explained 
by the fact that the region where the R&D investment is 

made (place of R&D facilities) is not necessarily the same 
to where the production of those innovations is carried out 
(usually production plants are translated to cheaper states, 
or either abroad). In columns (v) and (vi) we introduce the 
variables to account for industrial mix, being the share of 
industry over regional GDP significant, albeit only at 10%. 
In column (v) we replicate the previous regression, but 
including only the industry share on GDP, as it was found 
to be the only significant variable. The rationale for doing 
so is to avoid the constraint imposed by the variable of 
R&D (only available for 2010-2018) and to be able to perform 
an estimate covering the whole period (2010-2020). In this 
case, the industry intensity variable loses significance. 

In Table A.2. we introduce the industry intensity control in 
both SEM and IV models, again being non-significant.
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Table A.2. Economic Impact of Broadband – Fixed Effects SEM and IV estimates with additional 
control variables

Dep. variable: 
Spatial Error Model Instrumental Variable

(i) (ii)

0.487*** 0.462***

[0.045] [0.028]

0.700*** 0.509***

[0.081] [0.059]

0.004*** 0.001

[0.001] [0.001]

0.005** 0.022***

[0.003] [0.005]

-0.009 0.003

[0.013] [0.016]

Lambda 
0.552***
[0.054]

Underidentification test 34.643***

Hansen J statistic 0.748

Fixed effects by State YES YES 

R2 (within)
Observations

0.97
539

0.95
539

Estimation method ML 2SLS

Note: Robust standard errors in parentheses. *p<10%, **p<5%, ***p<1%. 
Source: Prepared by the authors

In all the cases, broadband remains positive and significant. 
All in all, we can conclude that the selected set of variables 

used in the main text is suitable enough to explain output 
variations, without incurring in any omitted variable bias.




