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EXECUTIVE SUMMARY

The purpose of this study was to examine the contribution of cloud computing as a key com-
ponent of the Information Technology (IT) industry in shaping energy consumption of Euro-
pean economies.’ The transformative power of IT in modern economies extends significantly
into all economic sectors, including those most concerned with energy and environmental
management. Accordingly, while the massive adoption of IT across individuals, governments,
and enterprises can potentially drive a paradigm shift in energy consumption, it also offers a
path to enhanced efficiencies. However, these advances are not without their potential draw-
backs since the digital era also imposes a surge in energy demand. This is why it is necessary
to conduct robust empirical analyses to identify the overall effect in aggregate energy impli-
cations of the migration to IT-intensive economies. In this context, this study is aimed to
provide evidence that the energy consumed by cloud computing in particular, and the IT
industry in general, while high, is more economically productive than that of other sectors (in
other words, it produces more added value per unit of energy consumed). Along those lines,
the European countries that foster the deployment of cloud computing data centers and
accelerate their migration to an IT-intensive economy should be highly energy productive,
which means that the energy consumed can have an additional impact on economic growth
and consumer welfare.

The study focus is on a comparative assessment of energy productivity across sectors in
Europe, measuring the gross value added gained from using a unit of energy. The study’s
overarching conclusion is that cloud computing is highly energy productive, and that
the IT sector is more energy-productive when compared with other sectors. Additio-
nally, the study measures the positive contribution of hyperscalers’ data centers to energy
productivity. Based on this evidence, cloud technology and IT industries can simultaneously
fulfill two objectives: (i) contribute to a country's economic growth based on their well-docu-
mented externalities, while (ii) increasing the continent's overall energy productivity and,
consequently, its competitiveness. The evidence generated by the study for Europe can be
summarized as follows:

= Energy productivity of a country’s economy, measured as Gross Value Added?
(GVA) by Megawatt hour of energy consumed, has been found to be positively
associated with percent of public and private organizations migrating to cloud
computing. An econometric model developed in this study regressing electricity
productivity against cloud adoption and a series of controls among European countries
indicates that 10% increase of cloud adoption will yield an increase in electricity

" As defined in the research literature, “energy productivity” measures the total economic value generated by
energy consumed. It differs from the concept of “energy efficiency” which measures consumption of energy
of plant and equipment. By measuring value produced, energy productivity includes energy efficiency as a
denominator in its calculation, but it addresses how well an economy is doing. See IEA: Productivity: multiple
benefits of energy efficiency. Retrieved in: https://www.iea.org/reports/multiple-benefits-of-energy-effi-
ciency/productivity; and Rinker, M. (2019). “Energy metrics: Efficiency, productivity, and intensity’, Journal of
advanced manufacturing and processing. Retrieved in: https://aiche.onlinelibrary.wiley.com/doi/epd-
f/10.1002/amp2.10032

2 Gross Value Added is a key indicator in national accounts and is used to estimate how much industries
contribute to the economy. It is also a proxy for Gross Domestic Product (GDP) in the output approach to
measuring GDP.
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productivity of 0.23% (a yearly increase equivalent to an average €8.6 per MWh
consumed, or €1,088 million per country). This effect can be demonstrated with data
of some specific European countries (Table A):

Table A: Economic gains in Energy Productivity yielded by an increase of 10% in cloud adoption

Economic gains per MWh (euros) driven Overall economic gains (million euros)
by a 10% increase in cloud adoption driven by a 10% increase in cloud adoption
Austria 942 € 684.72 €
Belgium 937 € 82138 €
Bulgaria 255 € 89.39 €
Croatia 520€ 8615 €
Czech Republic 508 € 34562 €
Denmark 15.86 € 533.69 €
Estonia 453 € 4164 €
Finland 488 € 41154 €
France 909 € 4,33875 €
Germany 1076 € 6,070.87 €
Greece 6.02 € 336.80 €
Hungary 525 € 21745 €
Iceland 177 € 32.65 €
Ireland 2017 € 562.54 €
ltaly 1054 € 325766 €
Latvia 6.91€ 4850 €
Lithuania 6.57 € 7720 €
Luxembourg 1398 € 110 €
Netherlands 1203 € 1,38551€
Norway 553 € 688.38 €
Poland 551€ 87569 €
Portugal 6.96 € 35040 €
Romania 6.35€ 336.23 €
Slovak Republic 567 € 16113 €
Slovenia 536 € 7759 €
Spain 858 € 217566 €
Sweden 6.75 € 898.54 €
Switzerland 2154 € 135145 €
United Kingdom 1592 € 5193.05 €
Average 8.56 € 1,088.32 €

Source: Eurostat, IEA, Telecom Advisory Services analysis
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The overall economic gains represent the increase in GDP for the country as a whole.
Why do cloud service adoption drives an improvement of an entire country energy
productivity? Because of the optimization in the supply of IT services. Energy productivity
can increase further every year by promoting cloud penetration.

On the other hand, energy productivity of a country’s economy also depends on
the supply of cloud services. An econometric model regressing cloud adoption,
hyperscaler deployment and share of IT value added for a data panel of 38 European
countries indicates that the deployment of each new availability zone® will result in
0.2% increase of energy productivity (equivalent on average to € 833 million).
This effect is driven by the implicit economies of scale in IT supply of large cloud service
providers. In addition, cloud hyperscalers are expected to lead to greater energy producti-
vity through advanced service optimization, which individual, traditional data centers are
typically less prone to achieve.

= The high energy productivity of large cloud service providers manifests itself
not only in the countries where they deploy infrastructure, but also in neighbo-
ring nations that host enterprises that purchase cloud services remotely. The
nature of cloud infrastructure is such that data centers—located in strategic ‘availability
zones'—often serve multiple countries. These zones can comprise one or more hypersca-
ler data centers located in close proximity selected based on factors like suitable connec-
tivity, electricity supply stability, and legal-economic environments, causing a spillover of
efficiency that is expected to impact neighboring countries. Accordingly, an econometric
model such as the one referred to above which incorporates neighboring country bene-
fits of large cloud data centers demonstrates that, for example, a new availability zone
being deployed in Italy, beyond the 0.2% increase in energy productivity locally
(equivalent on average to €2.8 billion euros) will generate an increase of energy
productivity of 0.05% in Greece by virtue of geographic spillovers (equivalent on
average to €73 million euros).

To sum up, large cloud service providers are associated with higher energy productivity at
two levels:

Increase in energy productivity
of country A by 0.2%

Deployment of a cloud zone by

a large cloud service provider in

country A Increase in energy productivity
of country B adjacent to
country A by 0.05%

% An “availability zone” are geographies where a cloud service provider operates a data center. This should
not be confused with the term “cloud regions” which may contain multiple “availability zones’ While a
availability zone may comprise multiple data centers, no two availability zones share the same data center.
Therefore, each availability zone is self-contained and physically isolated from other availability zones in
the same region to provide additional fault tolerance and resiliency.
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Beyond the specific effect of cloud computing, energy productivity of the IT industry
as a whole is much higher than that of other sectors. \While the IT industry is often regar-
ded as a heavy electricity consumption sector, it exhibits the highest energy productivity,
when compared with other sectors in terms of GVA per unit of electricity consumed.
On an average basis, the IT industry in European countries added € 7780 per MWh in 2021
while agriculture added € 5,348 per MWh and food processing € 2,334 per MWh,

Graphic B. Europe: Average energy productivity by sector (2021)
(value added per MWh in euros)
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Source: Eurostat, IEA, ITU, Data Center Map, Telecom Advisory Services analysis

In most European countries* the IT sector is the most energy productive sector, while in few
countries, it is ranked as the second most productive.® For example, in France and Germany,
the value added per MWh is close to twice that of agriculture (8,53919 and 8,595.88 Euros
per MWHh, respectively).

Consequently, countries with a large IT sector and a strong presence of cloud service provi-
ders fulfill by far the highest value in energy productivity: considering the higher economic
output per energy consumed for the IT sector, countries that exhibit higher share of value
added for the IT sector, will display higher energy productivity. In general, one percentage
point (e.g., from 4% to 5%) increase of IT as a percent of value added is associated
with an increase in total energy productivity of 1%. Accordingly, and as also demonstra-
ted by prior research, the massive adoption of IT across individuals, governments, and enter-
prises can potentially drive a paradigm shift in energy productivity. For instance, Ireland, a
nation with an IT sector representing 19% of the country’s value-added exhibits an average
electricity productivity of 11,367.93 euros per MWh, more than three times that of Sweden,
Germany and Poland, among others.

4 Austria, Belgium, Czechia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, and
Sweden
® Bulgaria, Poland, and Romania.
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In terms of public policy implications of this evidence, promoting the development of
information economies enabled by cloud computing will not only increase producti-
vity in the aggregate (as it reduces costs) but will also contribute to a country’s com-
petitiveness, through higher energy productivity.

Promoting the adoption of cloud computing services across firms and individuals will
also increase energy productivity (as it reduces costs per value added) and contribute
positively to the environment and ultimately state competitiveness.

The presence of cross-national spatial spillovers suggests that countries can enjoy the
benefits from large cloud infrastructure even if that is not being locally deployed, if they
do not impose data localization regulations that prevent its full use.

State development of the IT sector yields, in addition to the conventional competitiveness
benefits, the environmental effect of added energy productivity.
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1. INTRODUCTION

In the current era of unprecedented technological growth, energy efficiency and energy
productivity have emerged as critical needs for achieving global sustainability combined with
economic growth. Recent trends in global warming, have been raising concerns over envi-
ronmental degradation, pushing the private sector and governments alike to examine their
energy strategies, focusing on efficiency to mitigate climate change impact.

Consequently, in recent years, energy sustainability has turned into a proactive, innovative,
and integral aspect of modern energy management. Factors such as technological innova-
tion, economic considerations, and environmental awareness have been driving this shift.
The aim of most governments to promote green agendas aiming for environmental sustaina-
bility underscores the need for efficient energy utilization, making it a central topic in public
policy agendas. In Europe, the Energy Efficiency Directive, adopted in 2012 and subsequently
updated in 2018 and 2023, sets rules and obligations for achieving the EU’'s ambitious energy
efficiency targets.®

These objectives should be combined with economic growth as fostered by sectors that
maximize value added per unit of energy consumed. Beyond energy efficiency, the concept
of energy productivity is also a critical target. Since productivity measures the total economic
value gained from using a unit of energy, this metric introduces an economic dimension to
the public policy objective. By increasing the gross value added for the energy expended, an
economy can foster growth.” This is why it is necessary to conduct robust empirical analysis
to identify the overall effect in aggregate energy sustainability of the migration to [T-intensive
economies primary analytical focus of this research is to examine energy productivity by
countries and sectors in Europe.

In this context, the objective of the study is to examine the role of the Information Technology
(IT) industry, and more specifically of cloud computing and large cloud data centers, in sha-
ping energy productivity. The transformative power of ICTs in modern economies extends
significantly into all economic sectors, including those most concerned with energy and
environmental management. The massive adoption of IT across individuals, governments,
and enterprises results in an important increase in energy demand. However, it is relevant to
examine the impact of this shift in energy productivity. This is why it is necessary to conduct
robust empirical analysis to identify the overall effect in aggregate energy productivity of the
migration to IT intensive economies. In this context, this study aims to provide evidence
that the energy consumed by the IT industry and more particularly of large cloud
service providers, while high, is more productive than that of other sectors, produ-
cing more added value per unit of energy consumed. If proven so, the countries that
accelerate their migration to an IT intensive economy should be highly energy productive.

® See https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules
/energy-efficiency-directive_en

” By measuring value produced, energy productivity includes energy efficiency as a denominator in its
calculation, but it addresses how well an economy is doing (See IEA: Productivity: multiple benefits of
energy efficiency. Retrieved in: https://www.iea.org/reports/multiple-benefits-of-energy-effi-
ciency/productivity; and Rinker, M. (2019). “Energy metrics: Efficiency, productivity, and intensity’; Journal
of advanced manufacturing and processing. Retrieved in: https://aiche.onlinelibrary.wiley.com/doi/epd-
f/10.1002/amp2.10032)
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The study is structured in five chapters. In Chapter 2 we frame the hypotheses to be tested
empirically in the study. They are supported by a review of the research literature included in
appendix A. Chapter 3 presents the empirical specification and data to be used in several
econometric models to test the causality between cloud computing service provisioning and
energy productivity in Europe. Detailed review of the analyses is included in appendices B
and C. Chapter 4 develops a descriptive analysis of energy productivity across European
sectors, with the specific focus of comparing the IT sector with other industries. Data sources
for the descriptive analysis are detailed in Appendix D. Finally, Chapter 5 presents the study
conclusions and draws the policy implications.
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2. STUDY THEORETICAL FRAMEWORK

AND HYPOTHESES

Research on energy productivity, and the particular role of information technologies and
data centers has been conducted for a number of years (see Appendix A. Review of the
Research Literature). The principal objective of this study is to address a void in the research
literature by examining the role of IT, and more specifically, of cloud computing, in making
economies grow while increasing their energy productivity. In that sense, while recognizing
that digital technologies are heavy energy consumers, our purpose is to demonstrate
that, when measured by value added per unit of electricity consumption, the energy
productivity of the IT sector and large cloud computing service providers is higher
than in other sectors.

Along these lines, and based on the literature review, we put forward four study hypotheses:

The increase in cloud adoption by public and private organizations is a driver of state
energy productivity.

In particular, large cloud service providers, a key infrastructure of the information eco-
nomy, are expected to be associated with higher energy productivity. Energy productivity
of large cloud service providers manifest itself not only in the countries where they are
deployed but also in neighboring nations that host enterprises that purchase cloud servi-
ces. Hyperscalers, while being high energy consumers, can lead at the same time to
greater energy productivity through economies of scale and advanced service optimiza-
tion, not only within the countries they are located, but also in neighboring ones at a
regional level.

Moving to a more general level, in most countries the information technology (IT) indus-
try depicts the highest energy productivity, when measured as Gross Value Added (GVA)
per MWh. While recognizing the heavy energy consumption of the IT sector, its economic
output per energy consumed is higher than that of other sectors.

Consequently, countries with a large IT sector fulfill by far the largest values in energy
productivity: considering the higher economic output per energy consumed for the IT
sector, countries that exhibit higher share of GDP for the IT sector, will exhibit higher
energy productivity.

These hypotheses will be tested with two methodologies:

Econometric models analyzing the impact of cloud adoption, IT share of the economy,
and cloud services supply with energy productivity.

A descriptive analysis comparing economic output per energy consumed for different
sectors, comparing the IT industry with other sectors in European countries.
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3. ENERGY PRODUCTIVITY

OF CLOUD COMPUTING

This chapter is dedicated to estimate the impact of energy productivity of cloud computing,
as a technology infrastructure that is central to the IT sector (Appendix B presents the eco-
nometric model structure, and the descriptive data to be used in the models). Preliminary
statistical evidence indicates a positive link between cloud computing and energy producti-
vity, as plotted in Graphic 3-1: European countries with higher cloud adoption are asso-
ciated with a higher level of energy productivity (measured as GDP per thousand MWh
sold to non-residential end-users (million euros).

Graphic 3-1. Europe: Cloud adoption and energy productivity - averages by year
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Source: International Energy Agency, Eurostat, OECD, Telecom Advisory Services analysis

The econometric strategy to be followed to gauge the causal link between both terms is
threefold. First, we estimate the baseline empirical specification, through a simple fixed
effects model. After that, we augment the baseline model into a spatial estimation to incor-
porate cross-national spillovers arising from cloud infrastructure (zones) being deployed in
neighboring countries. Finally, we expand the model to account for dynamic effects in which

current energy productivity is driven by its past values (Appendix D presents model results).

The baseline model regressing cloud adoption, hyperscaler deployment and share of IT
value indicates that the deployment of an additional availability zone from a new servi-
ce provider will result in an energy productivity increase of 0.2% (equivalent on ave-
rage to €833 million euros). As indicated in all the models in Appendix C, when adding
multiple controls to the econometric model as well as the time trend and year fixed effects,
the impact of cloud adoption, and IT share remains significant.
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Another aspect of the estimates presented in the cloud baseline model relates to the effect
of availability zones on energy productivity of neighboring countries. Data centers
operated by large cloud service providers are expected to lead to greater energy productivity
through economies of scale and advanced optimization, which individual, traditional data
centers are typically unable to achieve. The approach followed in the prior model ignored the
spatial aspect related to availability zones that exists due to the geographical distribution of
these infrastructures. The nature of cloud infrastructure is such that hyperscalers' data cen-
ters—located in strategic 'cloud regions'—often serve multiple countries. These locations are
chosen based on factors like connectivity, electricity supply stability, and legal-economic
environments, causing a spillover of efficiency that is expected to impact into neighboring
countries. This interconnectedness requires a different analytical framework that transcends
boundaries, recognizing the spatial relationships between observations. Therefore, we deve-
loped a spatial econometric model to understand the cross-country effects of availability
zones on energy productivity This phenomenon is particularly relevant when countries share
cloud infrastructure regions or are served by the same hyperscalers. A spatial econometric
model allows the incorporation of these spatial spillover effects, providing a comprehensive
understanding of cloud computing's regional impact.

Figure 3-1. World distribution of Availability zones (2022)

Source: Telegeography, Telecom Advisory Services analysis
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In Figure 3-1 we plot the world distribution of availability zones deployed by global service
providers in cloud regions. Within this framework, countries adjacent to those hosting data
centers may be benefiting from deployments in neighboring geographies. For example, most
Latin American countries are expected to rely on the Brazilian cloud regions. Similarly, Saudi
Arabia and the United Arab Emirates are expected to be supplying cloud services for neigh-
boring MENA countries. Something similar occurs with China and India across Asian
nations. In addition, South Africa appears to be the only African country with these infrastruc-
tures, thus expecting to serve most African economies. For this reason, we reformulate our
baseline model to incorporate these cross-country spatial spillovers derived from the deploy-
ment of availability zones. This will consist in introducing as explanatory variable a new varia-
ble linking a country energy productivity with the deployment of availability zones across
neighboring countries.

After building the spatial variable, we re-estimate the model. This effectively proves that a
country being close to a availability zone but lacking cloud infrastructure will also derive
energy productivity gains. In other words, the deployments of cloud hyperscalers are
expected to generate positive effects in neighboring countries that are being served
by that infrastructure. The quantification of the effect varies depending on each specific
case, but we can provide a specific example to get a measure of the benefit a new availabi-
lity zone being deployed in Italy will generate an increase of energy productivity of
0.05% in Greece (equivalent on average to €73 million euros).

In addition, the coefficients associated with the cloud adoption and IT share variables remain
positive and significant, reinforcing the relevance of these indicators to explain disparities in
energy productivity. Relying in the most conservative of these estimates, we can say that a
10% increase in cloud adoption will yield a 0. 23% increase in energy productivity (a
yearly increase equivalent to €8.6 per MWh consumed, or €1,088 million for an avera-
ge country). This effect can be demonstrated with data from some specific countries (Table
3-1):
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Table 3-1 Economic gains in Energy Productivity yielded by an increase of 10% in cloud adoption

Country Economic g_ains per MWh (euros) d_riven Qverall econor_nic gains_ (million euros_)
by a 10% increase in cloud adoption driven by a 10% increase in cloud adoption
Austria 942 € 684.72 €
Belgium 937€ 82138 €
Bulgaria 255 € 89.39 €
Croatia 520 € 8615 €
Czech Republic 508 € 34562 €
Denmark 15.86 € 533.69 €
Estonia 453 € 4164 €
Finland 488 € 411.54 €
France 909 € 4,33875 €
Germany 1076 € 6,070.87 €
Greece 6.02 € 336.80 €
Hungary 525 € 21745 €
Iceland 177 € 3265 €
Ireland 2017 € 562.54 €
Italy 1054 € 3,25766 €
Latvia 6.91€ 4850 €
Lithuania 6.57 € 7720 €
Luxembourg 13.98 € MI0€
Netherlands 1203 € 138551 €
Norway 553 € 688.38 €
Poland 551€ 875.69 €
Portugal 6.96 € 35040 €
Romania 6.35 € 336.23 €
Slovak Republic 567 € 16113 €
Slovenia 536 € 7759 €
Spain 8.58 € 275,66 €
Sweden 6.75 € 898.54 €
Switzerland 2154 € 135145 €
United Kingdom 15,92 € 5193.05 €
Average 856 € 1,088.32 €

Sources: Eurostat; International Energy Agency; Telecom Advisory Services analysis



Our results also indicate that if the weight of the IT sector in the economy increases in one
percentage point (e.g, from 4% to 5%), energy productivity will increase in 1%.

Finally, we recognize that there is a dynamic relationship between current and past
values of energy productivity. To address this possibility in our model, we replicate
previous estimates but now including a lag of the dependent variable. In all cases, the dyna-
mic effects are valid, as energy productivity seems to depend on its past values. More impor-
tantly for our purposes, the economic effect of cloud computing penetration seems to be
unchanged after following this estimation strategy. To conclude, we tested several specifica-
tions of the econometric models in order to understand which is the most accurate.

Our results are clear in pointing out that increases in cloud adoption are associated with
improvements in energy productivity, thus reinforcing the critical role of cloud computing for
development as identified in prior research. In addition, the share of the IT sector seems rele-
vant to explain energy productivity in most of our estimates. Finally, we found that availability
zones of large hyperscalers appear to matter as drivers of energy productivity. Our results
have proven to be robust to the addition of country fixed effects, a large set of control varia-
bles, and temporal effects measured through different approaches (time-trend or year fixed
effects). One of the main novel results is the evidence accounting for the existence of spillo-
vers on neighboring countries derived from the deployment of cloud hyperscalers.
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4. ENERGY PRODUCTIVITY OF THE INFORMATION

TECHNOLOGY INDUSTRY IN EUROPE

The prior analysis confirmed the impact of cloud computing on energy productivity. Given
the importance of this infrastructure within the IT industry, it is also relevant to investigate
whether states that exhibit a higher share of their GDP related to IT industries also denote
higher energy productivity. The objective of the following chapter is to generate evidence on
the relationship between the IT industry and energy - primarily electricity - productivity and
compare it with similar metrics of other sectors. For this purpose, we compiled data for agri-
culture, forestry, and fishing, and for some specific manufacturing industries, such as those
related with food, textile, wood, paper, rubber and plastic, and metal products in European
countries.® For this analysis we built a dataset for European countries for 2021, considering
that 2022 data is not yet consistently available across sources (see Appendix D for data
sources for comparative analysis of energy productivity).

These datasets already allow drawing the first finding. While in the aggregate, the energy
consumption in the IT sector is increasing rapidly, the rate of growth is slower than
its output. As depicted in Graphic 4-1, internet traffic and datacenter workloads have been
increasing at a much faster pace than the respective electricity consumption in each field.
This is the result of the so-called Moore's law (Montevecchi et al, 2020), where diverse
performance metrics in the digital field (such as processing power) usually evolve much
faster than in traditional economic sectors.

Graphic 4-1. Europe: Evolution of global electricity consumption by IT component
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8 We excluded sectors that cannot be compared as their main source of energy is not electricity but fossil
fuels (e.g., transport).



By applying the estimated average electricity consumption by exabyte and by data center to
the data traffic and the number of data centers for each country, we obtain an estimate of
electricity consumption by the IT sector in each segment. Internet traffic by country was
obtained from the International Telecommunication Union (ITU). This data includes both
mobile and fixed broadband. On the other hand, the number of data centers by country is
reported in the Data Center Map database. Results for the calculation for electricity con-
sumption in the IT industry is presented in Table 4-1.

Table 4-1. Europe: Calculation of electricity consumption for IT sector (2021)

. " . Electricity consump- Electricity

oty | S | et e o | o o | onf Dot Ceters | consmptonof
Austria 9.82 753]64.49 1154,145.37 1,907,309.86
Belgium 14.47 1109,78700 40 1,846,632.03 2,956,419.03
Bulgaria 758 581,611.58 31 143114003 2,012,751.61
Czechia 12.76 978,298.00 24 1107,978.66 2,086,276.67
Denmark 12.28 941,697.98 32 1477,306.74 2,419,004.71
Finland 5.36 411,089.22 24 1107,978.66 1,519,067.88
France 8812 6,758,202.63 167 7709,692.28 14,46789213
Germany 105.46 8,088100.91 247 11,402,956.34 19,491,057.26
Greece 8.26 63313106 18 830,984.00 1,464,115.06
Hungary 7.92 607,200.49 9 415,492,00 1,022,692.48
Ireland 201 154,091.79 25 1154,145.37 1,308,23716
Italy 53.99 4)40,80053 89 4108,758.84 8,249,559.38
Latvia 318 243,891.86 18 830,984.00 1,074,875.86
Lithuania 2.92 224,230.73 12 553,989.33 778,220.07
Netherlands 20.47 1,570,09014 122 5,632,229.51 7202,319.65
Poland 2742 2,03,090.57 41 1,892,798.74 3,995,889.31
Portugal 12.78 979,875.78 33 1,523,470.66 2,503,346.45
Romania 14.42 1106,106.44 47 2169,793.40 3,275,899.84
Slovakia 3,69 283,275.23 14 646,322.74 929,59519
Sweden 13.08 1,003,398.02 62 2,862,28007 3,865,678.09
United Kingdom 136.70 10,483,955.61 286 13,203,424.45 23,687,380.06

Sources: International Energy Agency; International Telecommunication Union; Data Center Map; Telecom

Advisory Services analysis

? https://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx
"0 As fixed broadband traffic data was missing for Austria, France, Lithuania, Netherlands, Poland, and

Sweden in 2021, we imputed estimates according to the number of fixed broadband subscriptions and the
average traffic per subscription in the sample.
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The values of electricity consumption for some of the countries in table 4-1 were validated
with the figures estimated by Montevecchi et al. (2020) in their study submitted to the Euro-
pean Commission (see appendix D).

The aggregated results for energy productivity for all the economic sectors in European
countries, calculated as the average by country (weighted by population), indicates that the
IT industry stands out as the economic sector with the highest level of energy productivity.

Graphic 4-2. Europe: Average energy productivity by sector (2021)
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Source: Eurostat, IEA, ITU, Data Center Map, Telecom Advisory Services analysis

Beyond the aggregate estimates, the results by country are presented in Table 4-2.



Table 4-2. Europe: Energy productivity by economic sector (in euros) (2021)

Value added per Textile Wood Paper Rubber and Metals Agriculture
MWh -2021 (euros) plastic *)

Austria 3186.63 € | 2,814.96 €| 1,899.92 € | 44759 € 2,23778 € | 1056.97 € | 340749 € |7494.85 €
Belgium 154760 € | 1,384.52 €| 161857 € | 608.72 € 1,833.38 € | 62292 € 1,666.67 € |6954.51€
Bulgaria 1146.26 € | 1904.69 €| 50270 € | 45987 € 813.36 € 40188 € 562574 € |2,339.77 €
Czechia 2,22513 € | 172859 € | 2411.28 € | 56419 € 1,920.04 € 38010 € 4,23813 € 7178.05 €
Denmark (*) 176153 € | 414855 €| 2,896.12 € |2146.89 € 214521 € 782.96 € 2,38155 € (599924 €
Finland 1,318.01 € 417754 €| 1,35496 € | 20803 € 1453.70 € 25785 € 416595 € |9,256.92 €
France 192365 € | 429750 €| 1,743.39€ | 71144 € 146353 € | 34668 € 453122 € |8,53919 €
Germany 2,693.96 € | 409946 €| 1976.00 € | 56780 € 2,388.89 € | 50846 € 4,834.04 € [859588 €
Greece 315840 € | 177893 €| 110756 € |1099.77 € 479.00 € 25920 € 2,81947 € [4,033.26 €
Hungary 913.80 € 2]2063 €| 83170€ | 706.65 € 95982 € 673.30 € 4,565.20 € |6,86546 €
Ireland 748203 € | 443068 €| 1,75853 € |6,496.66 € 352027 € |2,96143 € | 6,366.93 € |57926.91 €
Italy 215423 € | 5035.38 €| 1,33547 € | 700.04 € 1,584.58 € 54002 € 528647 € |748409 €
Latvia 2,016.61€ | 549178 €| 1,37887 € | 3,22787 € 3486.08 € | 116163 € 613523 € |168855¢€
Lithuania 2,00010 € | 3180.73 €| 170285 € | 1,31717 € 1,575.68 € | 111800 € 8,822.20 € [2,75819 €
Netherlands 2,71561€ | 3156.69 € | 3,795.21€ | 111496 € 1,95750 € 60899 € 1180.89 € |5709.51€
Poland 1,814.26 € | 505796 €| 169748 € | 826.72 € 1,968.25 € 37400 € 731792 € [6]145.27 €
Portugal 1,96619 € | 363775 €| 1401.33 € | 36858 € 8,488.49 € 43176 € 410167 € |3,396.87 €
Romania 419780 € | 472433 €| 1,579.94 € | 82819 € 335054 € | 34728 € 1716843 € | 4,7/42.39 €
Slovakia 2,849.57 € | 621495 €| 3123.81€ | 38539 € 1,714.86 € 402,20 € 6,492.40 € |4,924.68 €
Sweden 2,099.66 € | 2,385.40 €| 2,5682.46 €| 25761€ 17154 € 51743 € 6,020.34 € |10,680.89 €
United Kingdom | 3,383.97 € | 2,843.98 € 468.00 € 755.99 € 3,88797 € |6,444.86 €

Country where the IT sector is the

most energy efficient

Country where the IT sector is the second

most energy efficient

Note: (*) data for Agriculture sector and for Denmark (excepting IT) corresponds to year 2020. It is not possible
to calculate values for other sectors beyond IT and agriculture in the United Kingdom because data on

electricity consumption is not available in Eurostat.

Source: Eurostat, IEA, ITU, Data Center Map, Telecom Advisory Services analysis

As depicted in Table 4-2, in most European countries the IT industry is the one with the
highest energy productivity. It is remarkable the position of Ireland, a country with a very
strong IT sector and presence of several multinational big technology companies, reaching
by far the largest value in energy productivity for the IT industry. On the other hand, in Bulga-
ria, Poland, and Romania IT is the second sector with the highest energy productivity. In
Lithuania and Slovakia, IT comes third after agriculture and textile manufacturing, while in
Portugal, IT reaches the fourth place after rubber and plastic manufacturing, agriculture, and
textile manufacturing. Only in Latvia the IT sector occupies a low position.
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If we consider the average energy productivity by economic sector along with the share of
the IT industry on the economy, we can conclude that on average, a higher weight of IT in
the economy (as share of GDP) is associated with higher energy productivity as
denoted in Graphic 4-3.

Graphic 4-3. IT sector share and average energy productivity (euros per MWh)
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Source: Eurostat, IEA, ITU, Data Center Map, Telecom Advisory Services analysis

All this evidence seems to suggest that the IT sector is among the leaders in terms of energy
productivity, and that a larger share of this industry in the economy seems to be associated
with higher energy productivity overall. This descriptive evidence will be complemented with
the econometric analyses to be present below and supported by models in Appendix C.

In sum, countries with a large IT sector and a strong presence of cloud service providers fulfill
by far the highest value in energy productivity: considering the higher economic output per
energy consumed for the IT sector, countries that exhibit higher share of value added for the
IT sector, will display higher energy productivity. In general, one percentage point (e.g.,
from 4% to 5%) increase of IT as a percent of value added is associated with an
increase in total energy productivity of 1%. Accordingly, and as also demonstrated by
prior research, the massive adoption of IT across individuals, governments, and enterprises
can potentially drive a paradigm shift in energy productivity. For instance, Ireland, a nation
with an IT sector representing 19% of the country’s value-added exhibits an average electrici-
ty productivity of 11,367.93 €euros per MWh, more than three times that of Sweden, Germany
and Poland, among others.
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5. CONCLUSION

The aim of this research was to provide evidence on the relevance of the IT sector in general
and cloud computing with regards to energy productivity.

As mentioned in the first study hypothesis, cloud computing large data centers are expected
to be associated with higher energy productivity. We developed an empirical specification
based on the main drivers of energy productivity and estimated it empirically through diffe-
rent approaches. As a particular specification, we introduced spatial effects where deploy-
ments in cloud infrastructures in a country are expected to drive cross-national spillovers to
its neighboring economies that will benefit from those infrastructures. Our results are clear in
pointing out that increases in cloud adoption are associated with improvements in energy
productivity, thus reinforcing the critical role of cloud computing for development as identi-
fied in existing research. We also provided important evidence accounting for the existence
of cross-country spillovers derived from the deployment of cloud hyperscalers, thereby provi-
ding evidence in support of the second hypothesis.

The descriptive analysis provided evidence in support of the third hypothesis. In most coun-
tries the information technology (IT) industry depicts the highest energy productivity, when
measured as GVA per MWh. While recognizing the heavy electricity consumption of the IT
sector, its economic output per energy consumed is higher than that of other sectors. In most
European countries, the IT industry exhibits the highest energy productivity, when compared
with other sectors in terms of GVA per unit of electricity consumed. In fact, while the IT indus-
try is often regarded as a heavy energy consuming sector, its economic output per energy
consumed in Europe is much higher than that of other sectors.

Consequently, as articulated in the fourth hypothesis, countries with a large IT sector fulfill by
far the largest values in energy productivity: considering the higher economy output per
energy consumed for the IT sector, countries that exhibit higher share of GDP for the IT
sector, will exhibit higher energy productivity. The most prominent example of this case is
Ireland a country with a very strong IT sector and presence of several multinational big tech
companies. Across European countries, a higher weight of IT in the economy (as share of
GDP) is associated with higher energy productivity.

The industrial policy implications of this evidence are clear. First, promoting the adoption of
cloud computing services across firms and individuals will increase energy productivity (as it
reduces costs) and will also contribute positively to competitiveness, through higher energy
productivity. Second, the presence of cross-national spatial spillovers suggests that coun-
tries can enjoy the benefits from cloud investments despite not being locally deployed, thus
meaning that data localization regulations that prevent full use of infrastructure adjacent to
the countries hosting a availability zone may limit the full contribution of energy productivity
of large-scale cloud service providers.
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APPENDIX A. REVIEW OF THE RESEARCH LITERATURE
A.1. Energy efficiency, energy productivity and their drivers

In line with most public policy agendas worldwide that are increasing their efforts
towards sustainable economic growth, energy efficiency and energy productivity
have been raised as an important concern in the research literature. For example,
the study by Atalla and Bean (2017) focused on the analysis of the determinants of
energy productivity, defined as the ratio of economic output per unit of energy
consumed. Using a database of 39 countries for the period 1995-2009, the authors
employ various analytical techniques to identify the determinants of energy
productivity. One key insight drawn from this analysis is that most country-level
increases in energy productivity were found to take place due to
improvements within sectors rather than shifts in economic structure. In
addition, the authors found that the highest rate of improvement in energy
productivity was registered in former communist countries that have been
undergoing economic liberalization processes through that period. Their results
also point to income per capita and energy prices as drivers of energy productivity,
while a greater share of output from industry was found to be associated with lower
energy productivity levels.

Coinciding partially with some of the conclusion of the prior study, Sineviciene et al.
(2017) analyzed the drivers of energy efficiency during the period 1996-2013 in
Eastern Europe post-communist economies. Relying on a stochastic frontier
function approach and a comparative analysis to examine long-run dynamic
relations, the authors point to GDP growth as a key factor increasing both energy
efficiency, while fixed capital formation and the share of industry in the
economy are also important drivers. In short, changes in industry structure
also appear to play a role in driving improved energy efficiency. This is partially
consistent with the research of Chang and Hu (2010), who developed a total-factor
energy productivity index to evaluate the change in regions in China. They found that
factors affecting energy efficiency are linked to economic development, to the
electricity share of energy consumption, coupled with the sector structure of
the economy. While this study focuses energy consumption and efficiency rather
than energy productivity, by relating these to level of development and the share of
different sectors of the economy, it provides an analytical framework of causality
that is useful to understand energy productivity.

Turning to an additional perspective, Uwasu et al. (2012) explored the drivers of
energy productivity, defined as the ratio of Gross Regional Product and energy input,
in China’s provinces during the period between 2004 and 2007. The authors
disaggregated energy productivity into two attributes: technology use and input
factors. On this basis, they estimated energy technology levels, with results showing
that disparities exist across the provinces even after controlling for differences in
the contribution of input factors to energy productivity, implying the importance
of technological advancements for energy productivity enhancement. They
also argue that investment in technology and the quality of capital can indirectly
determine the level of energy productivity.
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Song and Zheng (2012) conducted an econometric study using a Chinese provincial-
level panel data set for the period between 1995 and 2009, concluding that while
increasing incomes were a substantial factor in driving energy efficiency,
energy prices were not a Key driver. They also noted that the growth in
urbanization rates presented obstacles to enhancing energy intensity.

In another study covering four decades and examining 75 nations, with a special
focus on Latin America, Jimenez and Mercado (2014) analyzed energy intensity
trends. Their research revealed that advancements in energy efficiency were
mainly due to improvements in energy intensity! across the economy. Their
econometric evaluation identified that critical factors included rising per capita
income, oil prices, and overall economic expansion.

To sum up, the research literature has identified so far, several drivers of energy
productivity and efficiency that will be taken into consideration in our empirical
work (see table A-1).

Table A-1. General economic drivers of energy productivity and efficiency

Drivers Research literature
GDP / Income per capita Atalla and Bean, 2017
Sineviciene et al., 2017
Song and Zheng, 2012
Jimenez and Mercado, 2014
Chang and Hu, 2010
Sectoral structure of the Atalla and Bean, 2017
economy e Sineviciene etal., 2017
e (Changand Hu, 2010
Fixed capital formation e Atalla and Bean, 2017
e Sineviciene etal., 2017

Capital quality e Uwasuetal, 2012
Productivity e Uwasuetal, 2012
Energy prices e Atallaand Bean, 2017

e Jimenez and Mercado, 2014
Technological advances e Uwasuetal, 2012
Urbanization e Atalla and Bean, 2017

e Songand Zheng, 2012

A.2. Energy productivity and efficiency in the ICT sector

The specific role of ICT in driving energy productivity and efficiency has been less
researched than general drivers, although the existing evidence provides some
important insights regarding the impact of digital technology.

Berkhout and Hertin (2001) identified five domains where ICTs could enhance
production efficiency, consequently lowering energy use: (i) Intelligent production
processes; (ii) Intelligent creation and operation of goods and services; (iii)
Intelligent distribution and logistics, such as enhancing supply chain efficacy or
modifying distribution frameworks; (iv) Transforming consumer-producer

! Energy intensity is defined as the ratio of the total final consumption of energy and the GDP, thereby
closer to the term of energy productivity used in this study.
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dynamics through, for instance, mass customization; (v) Restructuring of work
organization, like the adoption of remote work practices. In a similar conclusion, Sui
and Rejeski (2002) have characterized the positive environmental impact of ICT as
the "three D’s for the new economy”: the transition from physical to digital
formats (they call it dematerialization), the move towards a less energy-
demanding economy (decarbonization), and reduced necessity for physical
movement due to digital alternatives (demobilization). Further, Beier et al
(2018) argued that the adoption of the Internet of Things (IoT) in industries can
pave the way for more resource-conservative production, enhanced recycling
methodologies, and anticipatory maintenance routines. In addition, some authors
have argued that smart energy consumption feedback systems, supported by a range
of digital technologies, have the capability to drastically diminish energy
requirements within residential areas (Buchanan et al, 2015; Jensen et al, 2016;
Malmodin and Coroama, 2016; Nilsson et al, 2018).

Other authors present a more nuanced view of the positive impact of ICT on energy
efficiency. For example, Lange et al. (2020) examined four primary effects linking
ICT deployment and energy efficiency: (i) the direct energy consumption stemming
from ICT production and usage, (ii) the potential energy efficiency gains due to
digitalization, (iii) the economic growth spurred by enhanced productivity, and (iv)
the shift towards a more service-oriented economy with the proliferation of ICT
services. The authors main conclusion is that while certain aspects of digitization
promote energy efficiency, these are overshadowed by the increased energy
demands brought about directly by ICT and indirectly through economic growth
stimulated by digitization. Consistently with this conclusion, Batool et al. (2022)
explore the relationship between ICT and energy consumption across various
sectors in China. Their research uses a threshold regression analysis, considering
ICT as a critical point influencing energy consumption behavior within residential,
industrial, and transport sectors for the period 1990-2021. The study unveiled an
asymmetric impact of ICT on energy consumption, with varying outcomes across
different sectors. One of the authors’ critical insights is the potential for ICT to
generate rebound effects? — situations where increased efficiency leads to
more energy consumption due to behavioral or systemic responses. However,
there are a number of studies and simulations that indicate that, when considered
in the aggregate, the rebound effects are too small in relation to the efficiency
effects.3

A.3. Energy efficiency, energy productivity, and cloud computing

In recent years, cloud computing has emerged as a transformative force, reshaping
how businesses operate and how services are delivered. Massive investments have

2 The term rebound is used to describe effects which prevent the potential savings resulting from
efficiency increases from being realized (at all or in full). It is measured as the percentage of the
theoretical savings potential of efficiency increases which cannot be saved due to consumer
behavior. Direct rebound results in an increased demand for the same good due to, for example,
lower prices. Indirect rebound measures increased demand for other goods driving energy
consumption as a result of savings in consumption of primary good.

3 See Gillingham, K., M. Kotchen, D. Rapson, G. Wagner, 2013. “The Rebound Effect is Over-played.”
Nature, 493: 475-476. http:/ /www.nature.com/nature/journal /v493 /n7433 /full/493475a.html
In an opposite view, see Brockway and Sorrell (2016).
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been conducted recently by global players such as Alibaba, Amazon Web Services,
Microsoft, or Google in cloud platforms across the globe, while the share of firms and
individuals that purchase cloud services has been increasing steadily through the
years. This situation has brought the need to explore the potential of cloud
computing not just as a technological innovation but also as a potential tool for
energy productivity and efficiency.

The theoretical contribution of cloud computing to energy efficiency lies in the
optimized utilization of computing resources and the agility in adopting efficient
software solutions. Traditional data centers are known for their high energy
consumption, primarily due to underutilization of resources and the need for
constant cooling systems (Mastelic and Brandic, 2015). Cloud computing, with its
shared resources model, optimizes the use of hardware, thereby increasing the
workload per energy unit consumed. This principle allows for significant energy
savings compared to traditional computing methods (Fiandrino et al.., 2017). Along
these lines, the cloud computing shared resources model optimizes the use of
hardware, increasing the workload per energy unit consumed. Similarly, another
study estimates a technical savings potential of 87% in energy consumption if
typical office applications are shifted to the cloud.*

Moreover, cloud data centers benefit from economies of scale. Large-scale
operations allow for more significant investments in energy-saving technologies,
such as advanced cooling systems, renewable energy sources, and state-of-the-art
server technology, which smaller data centers might not afford (Vashist and Singh,
2013). The deployment of large cloud hyperscalers contribute to maximize the
benefits of economies of scale. For example, research evidence indicates that while
hyperscalers are heavy energy consumers, research commissioned by AWS shows that
that their infrastructure is 3.6 times more energy efficient than the median of the
surveyed US enterprise data centers.> Consequently, companies that have migrated
to the cloud are expected to report not only reduced operational costs but also
decreased energy usage. These savings are most notable in organizations with
fluctuating demands, as cloud computing allows them to scale resources up or down
based on real-time needs, avoiding the inefficiencies of unused resources.

Despite its potential, achieving energy efficiency through cloud computing is not
without challenges. Data centers' energy efficiency varies significantly based on
their design, usage, and geographical location. The reliance on renewable energy
sources and the effectiveness of cooling technologies are also important factors
(Mastelic and Brandic, 2015). Furthermore, the rebound effect discussed above
might suggest that the cost savings and efficiencies gained from cloud computing
could lead to increased consumption, potentially mitigating some of the
environmental benefits. That said, no research has been conducted to date to
document the potential impact of rebound effects in cloud computing.

4 Masanet, E., Shehabi, A, Ramakrishnan, L., Liang, ]., Ma, X., Walker, B., Mantha, P. (2014). The
Energy-efficiency Potential of Cloud-Based Software: A US Case Study. Berkeley, CA: Lawrence
Berkeley National Laboratory.

5451 Research (2019). The Carbon Reduction Opportunity of Moving to Amazon Web Services
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APPENDIX B. ECONOMETRIC MODELS STRUCTURE AND
DESCRIPTIVE DATA

B.1. Econometric model

The empirical specification to be estimated for cloud computing is presented in the
following equation, where i and t denote respectively country and year:

log(Energy productivity;;)
= a; + B log(Cloud;;) + § Availability zones;; + ¢ IT share;; + 1 X;; + y;: + €;¢

The dependent variable is energy productivity, which is expected to depend on a
country-level fixed effect (;), on cloud adoption, on the number of zones being
deployed by global cloud service providers across regions, and on the weight of the
IT sector in the economy.

The diversity of ICT-related variables aims to address the complexities in the link
between digital technologies and energy productivity as described in the literature
review. Cloud computing, characterized by on-demand availability, resource pooling,
and rapid elasticity, has changed how computing resources are accessed and used.
From that perspective, we expect a higher cloud adoption rate across the economy
to yield larger energy productivity, although the rebound effect can potentially
mitigate or even counteract those positive results, as highlighted in the literature
review. In addition, the relevance of cloud computing is not only driven by firms
demanding these services, but critically on the supply side as well, as availability
zones, managed by large scale cloud service providers, are high energy consumers
but at the same time can lead to greater energy efficiency through economies of scale
and advanced optimizations, which individual, traditional data centers are typically
unable to achieve. Finally, the inclusion of the share of IT sector in the economy aims
to control for potential effects related to this industry beyond cloud adoption or its
infrastructure deployments.®

The inclusion of country fixed effects is especially relevant to control for time-
invariant factors that may make some economies more productive in their energy
use because of unobserved characteristics. The term X represents a vector of time-
varying control variables that could be associated to different levels of energy
productivity, as identified in the literature review above (see section 2.1). Finally, y,
captures temporal effects affecting all the sample, and ¢;; is the error term.
Controlling for temporal effects is also relevant, as it may account for exogenous
technological change if it affects all the countries included in the sample.

B.2. Descriptive data to be used in the models

An unbalanced panel was compiled for 38 countries covering the period 2013-2020.
Data availability prevented us from expanding the sample for more economies, as

6 We also considered including broadband penetration as an additional regressor. However, the
coefficient associated to this variable was very far from being significant across all the model
specifications, so it was finally discarded.
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we were restricted by the countries reported in OECD Stat” and Eurostat. The time
dimension of the panel was also constrained, as data on cloud adoption is mostly
unavailable before 2013, while 2020 is the last year of real electricity consumption
data reported by the IEA. The economies included in our sample are listed in Table
B-1.

Table B-1. Countries included in the sample for the econometric analysis

Australia Germany Norway
Austria Greece Poland

Belgium Hungary Portugal

Brazil Iceland Romania
Bulgaria Ireland Slovak Republic
Canada Israel Slovenia
Colombia Italy Spain

Croatia Japan Sweden

Czech Republic Korea Switzerland
Denmark Latvia Turkey

Estonia Lithuania United Kingdom
Finland Luxembourg United States
France Netherlands

Source: Telecom Advisory Services analysis

In Table B-2 we present the set of variables to be used in the empirical analysis. The
dependent variable is energy productivity, defined as GVA by TWh of electricity
consumed. GVA data was obtained from Eurostat, while electricity consumption was
extracted from the IEA database. The values for this (and all variables to be
represented in monetary units) were deflated and expressed in 2015 constant
prices, to remove the effects of inflation.

As for the IT related variables, cloud adoption is defined as the share of firms
purchasing cloud computing services (data compiled from OECD Stat).8 In addition,
to account for investment in local cloud infrastructure, we included the number of
zones in cloud regions being deployed by global cloud service providers, information
provided by TeleGeography.? The weight of the IT sector (calculated as the share of
its GVA across the whole economy) is obtained from Eurostat.

7 https://stats.oecd.org

8 When a single year of cloud penetration is missing between two reported values, we imputed the
correspondent figure based on the compound average growth rate across that interval.

9 TeleGeography provides a list of cloud regions being deployed since 2006 that were used to build
the stock of availability zones. Global providers contemplated in the database are Alibaba, Amazon
Web Services, Microsoft Azure, Google Cloud Platform, IBM Cloud, Oracle Cloud, OVH, and Tencent
Cloud. Cases where the launching date was not available in the dataset were excluded.
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Table B-2. Variables description and main statistics

Variable Description Source Mean  Std. dev.
Energy Gross value added per TWh of electricity
productivity consumed (million US$ at 2015 constant prices) Eurostat / IEA 4226.801 2182.680
Cloud ]E;;lnesses purchasing cloud computing services OECD 0.289 0.167

0
?:I?;l:blhty Number of zones in cloud regions TeleGeography 3.572 10.650
Gross value added for information and
IT share communication sector (% of total GVA) Eurostat 0.049 0.019
Manufacturing  Gross value added for manufacturing sector (%
share of total GVA) Eurostat 0.159 0.059
Agriculture Gross value added for agriculture, forestry, and
share fishing sector (% of total GVA) Eurostat 0.028 0.018
GDP pc GDP per capita (US$ at 2015 constant prices) World Bank 34640.730 22885.330
Capltal. Gross fixed capital formation (% of GDP) World Bank 0.219 0.044
formation
Urban Urban population (% of total population) World Bank 0.767 0.118
. . Penn World Tables
TFP TFP at constant national prices (2017=1) / World Bank 0.992 0.029
. . . . o

FDI E(]))r:)lgn direct investment, net inflows (% of World Bank 0.041 0.193
Electricity cost Price of electricity (US$ cents per kWh at 2015 World Bank 15.195 5317

constant prices)

Source: Telecom Advisory Services analysis

As for the control variables, it is important to consider an extensive set of time-
varying potential drivers of energy productivity in order to correctly isolate the
cloud computing variables. First, we first must control for the sectoral structure of
the economy because the different economic sectors vary in terms of their energy
consumption. Therefore, we include the weight of the manufacturing sector in the
economy, as suggested by related research (Atalla and Bean, 2017; Sineviciene et al,
2017). We also include the share of agriculture activity. As a result, we are effectively
controlling for sectoral structure of the economy by accounting for the weight of
manufacturing, agriculture, and IT sector, leaving the remaining services as a
baseline scenario.

We also incorporate average income levels (measured through GDP per capita) as a
driver of energy productivity, as has been highlighted by most of the specialized
literature (Atalla and Bean, 2017; Chang and Hu, 2010; Jimenez and Mercado, 2014;
Sineviciene et al, 2017; Song and Zheng, 2012). This indicator is expected to capture
the effects associated to variations in income, as well as other factors linked to
economic development not captured by the country fixed effects. The data was
compiled from the World Bank database.

Investment in capital has also been identified as a potential driver of energy
productivity (Atalla and Bean, 2017; Sineviciene et al, 2017). Economies with high
investment intensity should replace their capital stock faster, therefore being
expected to have on average newer energy-productive capital (Atalla and Bean,
2017). We control for this factor by including the share of gross fixed capital
formation in the GDP (data source: World Bank).
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In addition, Uwasu et al (2012) argues that the quality of capital matters as well,
proposing Foreign Direct Investment (FDI) as a measure to control for this.
Therefore, we control for FDI net inflows as a share of GDP, data provided by the
World Bank. Total Factor Productivity (TFP) is also an important part of energy
productivity according to Uwasu et al. (2012). Thus, we compiled this indicator from
the Penn World Tables (PWT) as a further control. As the latest PWT database
available covers up to 2019, to estimate the value of TFP during 2020 by assuming
that it evolved at the same growth rate as labor productivity.

Urbanization is also expected to be a relevant driver of energy efficiency, as argued
by Atalla and Bean (2017). As highlighted by the authors, moving from rural areas
to urban and industrialized economies will likely stimulate more energy intensive
activities, although is equally true that urban areas are expected to present more
energy productive sectors like financial services. Without having a clear picture on
the overall effect, we introduced the share of population living in urban areas (data
from World Bank) as an additional control. Finally, we also included as a control the
price of electricity provided by the World Bank (US$ cents per kWh). As argued by
Atalla and Bean (2017), energy prices are usually an important component of
production costs, with higher prices being expected to lead to lower energy
consumption and to shift the development and adoption of less energy intensive
capital.

In order to get some preliminary insights related to cloud computing and energy
productivity, we plot both variables using year averages for both cloud adoption and
electricity efficiency, with results showing an almost perfect fit for a linear
relationship.

Graphic B-1. Cloud adoption and energy productivity - averages by year
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In order to get a complementary view at a country-level, we present in Graphic B-2
the evolution across the years in both cloud adoption and electricity efficiency for
selected countries. The series of electricity efficiency can be backwardly extended to
2005, since there is data available that allow us to understand previous patters. The
evidence points to a clear positive link between both variables.
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Graphic B-2. Cloud adoption and electricity efficiency across countries

Source: IEA, Eurostat, OECD Stat, Telecom Advisory Services analysis
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APPENDIX C. ECONOMETRIC MODEL RESULTS

C.1 Baseline Availability zone Model

The results for the econometric estimations developed in the baseline models are
presented in Table C-1. All estimates were developed through panel data fixed effects

models with robust standard errors clustered by country.

Table C-1. Baseline Cloud Model: Fixed Effects estimation of energy

productivity drivers
Dep. var.: log (Energy productivity) (i) (ii) (iii) (iv)
0.077*** 0.053*** 0.031** 0.030**
Log (Cloud)
[0.013] [0.018] [0.013] [0.014]
. 0.002** 0.003*** 0.002 0.002
Availability zones
[0.001] [0.001] [0.001] [0.002]
2.892%x* 1.546%+* 1.482%** 1.136*
IT share
[0.469] [0.440] [0.456] [0.583]
) 0.499 0.552 0.721**
Manufacturing share
[0.366] [0.367] [0.341]
. -0.914 -1.085 -1.339
Agriculture share
[0.894] [0.932] [0.970]
Log (GDP pc) 0.355%** 0.260** 0.307*
gLorP [0.113] [0.120]  [0.175]
. ) -0.002 0.012 -0.001
Log (Capital formation)
[0.039] [0.036] [0.038]
-0.191 -0.939 -1.098
Log (Urban)
[0.595] [0.688] [0.705]
0.006 0.075 0.066
Log (TFP)
[0.194] [0.167] [0.172]
-0.004 -0.004 -0.002
Log (FDI)
[0.003] [0.003] [0.003]
Log (Electrici 9 -0.011 -0.008 -0.005
0 ectricity cos
g v [0.021] [0.019]  [0.018]
. 0.008*
Time trend
[0.004]
Country fixed effects Yes Yes Yes Yes
Year fixed effects No No No Yes
R-squared 0.581 0.740 0.748 0.774
Observations 225 190 190 190

Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1
Source: Telecom Advisory Services analysis

First, we start in column (i) with a simple estimation without control variables and
temporal effects, thus effectively assuming our empirical specification with the
restriction A =y = 0. All cloud related variables present positive and statistically
significant coefficients, as it could have been expected from the literature review.
However, this result may be capturing the incidence of other variables linked to
digitization and energy productivity, as we may be in the presence of an omitted
variable bias. For that reason, in column (ii) we relax the previous assumption
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regarding A and introduce the prepared set of controls in the estimation to check
whether the effect of cloud computing on energy productivity is robust to the
addition of other factors which may be affecting this latest variable. Results again
verify the relevance of cloud-related variables as drivers of energy productivity,
although the coefficients for cloud penetration and IT share on the economy now are
smaller. The fact that now GDP per capita control presents a positive and significant
coefficient suggests that in the estimation without controls, possibly the ICT
variables were capturing some effect associated with economic development not
absorbed by the country fixed effects. Beyond this adjustment in the magnitude of
the effect, it can be said that the incidence of cloud computing on energy productivity
seems to be robust to the addition of further control variables.

However, the previous estimates still do not include temporal effects (y = 0). The
omission of this control may be making ICT-related variables to be capturing some
effect attributable to exogenous technological progress. Therefore, in column (iii) we
introduce a time-trend in the estimation, which is positive and significant at a 10%
level, effectively suggesting a common trend of productivity improvement across the
countries considered. As for the coefficients associated with cloud computing, again
there is areduction in its magnitude, thus suggesting that previous estimations were
absorbing a higher-than-expected effect. In addition, the coefficient associated with
availability zones becomes insignificant from a statistical viewpoint. This is not
surprising, as the effect of big cloud hyperscalers has to be analyzed from a trans-
national perspective, as these investments are usually done to serve groups of
countries rather than for domestic demand only. Finally, in column (iv) we test a
different alternative to account for temporal factors, introducing year fixed effects.
Again, ICT coefficients are slightly reduced, while in the case of the IT share the
significance level is now 10%. In this last specification, we are explaining more than
77% of the within-country variation in energy productivity across the period, as
denoted by the R-squared. However, none of the year fixed effects are statistically
significant,'® meaning that our preferred estimation should be that reported in
column (iii). All in all, we can argue that increases in cloud adoption and a strong IT
industry can be considered drivers of energy productivity, and these results are
robust to the introduction of fixed effects, an extensive list of control variables, and
temporal effects.

In sum, the baseline model regressing cloud adoption, hyperscaler deployment and
share of IT value indicates that the deployment of a new availability zone will result
in an energy productivity increase of 0.2%, although in some estimates this value
becomes insignificant from a statistical viewpoint. As indicated in all the models,
when adding multiple controls to model (i) as well as the time trend and year fixed
effects, the impact of cloud adoption, and IT share remains significant. In model (ii),
availability zone deployment also remains significant when adding controls.

C.2. Cloud Model augmented with spatial effects

We reformulate our baseline model to incorporate these cross-country spatial
spillovers derived from the deployment of availability zones. This will consist in

10 The coefficients associated to year dummy variables are not presented in Table 6 for brevity,
although are available for the readers upon request.
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introducing as explanatory variable a new variable linking a country energy
productivity with the deployment of availability zones across neighboring countries:

log(Energy productivity;;)
= a; + B log(Cloud;;) + 6 Availability zones;; + T W Availability zones;;
+ @ IT share;; + A X + v + €t

Where we define the spatial availability zones variable as it follows:

W Availability zones;; = Z w;jAvailability zones j;
j#i

In the previous definition, w;; accounts for a spatial weight that links any country i
will all the remaining countries j. This will mean that we expect T > 0, because of
the spatial spillovers. To account for the spatial weights, we developed an (inverse)
distance spatial weights matrix, row normalized. This means that all the countries
are connected, although with diminishing intensity depending on the geographical
proximity. An important remark here is that all world countries were considered in
the building of the spatial weight’s matrix and in the calculation of the W Availability
zones variable. Therefore, even if our sample is restricted to 38 economies, we are
considering all countries with availability zones being deployed, and thus, the
parameter 7 is also capturing the effects of availability zones being deployed in
countries not included in our dataset.

After building the spatial variable, we re-estimate the model and present the results
in Table C-2. An interesting result is that the availability zones variable is no more
significant under any specification, while the opposite happens with the W
availability zones variable that accounts for spatial spillovers, which is always
positive and significant. This effectively proves that a country being close to a
availability zone will derive energy productivity gains. In other words, the
deployments of cloud hyperscalers are expected to generate positive effects in
neighboring countries that are being served by that infrastructure. The
quantification of the effect varies depending on each specific case, but we can
provide a specific example to get a measure of the effect: a new availability zone
being deployed in Italy will generate an increase of energy productivity of 0.05% in
Greece, as assumed as the most conservative impact that of model (i).

In addition, the coefficients associated with the cloud adoption and IT share
variables remain positive and significant, reinforcing the relevance of these
indicators to explain disparities in energy productivity. Relying in the most
conservative of these estimates, we can say that a 1% increase in cloud penetration
will yield a 0.023% increase in energy productivity, while on the other hand, if the
weight of the IT sector in the economy increases in one percentage point (e.g., from
4% to 5%), energy productivity will increase by 1%.

37




Table C-2. Spatial model: Fixed Effects spatial estimation of energy
productivity drivers

Dep. var.: log (Energy productivity) (i) (ii) (iii) (iv)
0.037** 0.023** 0.035%** 0.029**
Log (Cloud)
[0.015] [0.011] [0.011] [0.014]
o 0.001 0.001 0.002 0.002
Availability zones
[0.001] [0.002] [0.001] [0.002]
o 0.044*** 0.057** 0.078** 0.077*
W Availability zones
[0.014] [0.024] [0.035] [0.043]
2.299%** 1.466%** 1.505%** 1.041*
IT share
[0.458] [0.375] [0.351] [0.529]
) 0.584 0.559 0.616*
Manufacturing share
[0.367] [0.365] [0.338]
, -1.189 -1.106 -1.284
Agriculture share
[0.856] [0.795] [0.787]
0.213 0.263** 0.356**
Log (GDP pc)
[0.129] [0.120] [0.175]
) . -0.013 -0.032 -0.038
Log (Capital formation)
[0.033] [0.031] [0.034]
-0.835 -0.258 -0.486
Log (Urban)
[0.736] [0.781] [0.714]
0.184 0.176 0.126
Log (TFP)
[0.127] [0.124] [0.133]
-0.002 -0.001 0.000
Log (FDI)
[0.003] [0.003] [0.003]
. -0.002 -0.001 0.001
Log (Electricity cost)
[0.014] [0.014] [0.013]
) -0.009
Time trend
[0.005]
Country fixed effects Yes Yes Yes Yes
Year fixed effects No No No Yes
R-squared 0.620 0.778 0.783 0.798
Observations 225 190 190 190

Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1

Source: Telecom Advisory Services analysis

As indicated in all the models, even when adding multiple controls to model (i) as
well as the time trend and year fixed effects, the impact of cloud adoption, spatial
effects, and IT share remains significant.

C.3. Model accounting for dynamic effects

While following a different empirical strategy, Atalla and Bean (2017) argue that
there is a dynamic relationship between current and past values of energy
productivity. To address this possibility in our model, we replicate previous
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estimates but now including a lag of the dependent variable as right-hand
regressors.11 Therefore, the empirical specification turns into the following:

log(Energy productivity;;)
= a; + 0 log(Energy productivity;;_;) + B log(Cloud;;)
+ 6 Availability zones;; + t W Availability zones;; + ¢ IT share;; + 4 X;;
+ Vet &

Based on the previous equation, it is anticipated that energy productivity will be
influenced by its own previous value. From an econometric viewpoint, incorporating
the lagged dependent variable as a regressor is likely to result in a correlation with
the fixed effects in the error term. This correlation creates a "dynamic panel bias" as
described by Nickell (1981) and violates the necessary assumptions for consistency
in Ordinary Least Squares (OLS) estimators with fixed effects.

Since our equation cannot be estimated using the traditional fixed effects approach
due to these circumstances, we need to employ an estimation strategy that considers
country-specific effects without encountering the "dynamic panel bias". In contrast
to the traditional fixed effects approach, the estimator proposed by Arellano and
Bond (1991) using the Generalized Method of Moments (GMM) is specifically
designed for dynamic panels, without incurring in the biases associated with the OLS
estimator for these models. The estimations with robust standard errors are
presented in Table C-3.

11 We tested a model including also a second lag of the dependent variable as regressor, although we
discarded it as it was never significant. These results are available upon request.
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Table C-3. Arellano-Bond dynamic panel of electricity productivity drivers

Dep. var.: log (Energy productivity) (i) (i) (iii) (iv) (v) (vi)
. . 0.271** 0.203** 0.214** 0.233** 0.200%*  0.219**
Log (Electricity productivity) +1
[0.106] [0.089] [0.094] [0.097] [0.092] [0.104]
0.059*** 0.037*** 0.034** 0.037** 0.035**  0.037**
Log (Cloud)
[0.012] [0.014] [0.017] [0.017] [0.017] [0.018]
Availabilitv zones 0.002** 0.002* 0.002** 0.001 0.002 0.001
y [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]
N 0.073***  0.049*
W Availability zones [0.022] [0.027]
1.239%** 0.846 0.724 0.421 0.732 0.362
IT share
[0.358] [0.711] [0.710] [0.736] [0.558] [0.635]
) 0.462** 0.456* 0.647*** 0.532**  0.621***
Manufacturing share
[0.227] [0.236] [0.163] [0.233] [0.171]
) 0.733 0.900 0.658 0.814 0.625
Agriculture share
[1.066] [1.077] [1.142] [1.096] [1.133]
0.454*** 0.453*** 0.436%**  0.399*%*  (0.441***
Log (GDP pc)
[0.112] [0.100] [0.167] [0.097] [0.165]
) ) 0.000 0.004 -0.014 -0.026 -0.030
Log (Capital formation)
[0.044] [0.045] [0.040] [0.038] [0.037]
Log (Urban) -0.861* -0.887 -1.070* -0.587 -0.875
og (Urban
& [0.494] [0.663] [0.557] [0.800] [0.594]
0.011 0.007 0.032 0.086 0.058
Log (TFP)
[0.141] [0.139] [0.141] [0.138] [0.139]
-0.002 -0.002 -0.001 -0.000 -0.000
Log (FDI)
[0.004] [0.003] [0.003] [0.003] [0.003]
. 0.009 0.009 0.014 0.007 0.013
Log (Electricity cost)
[0.011] [0.011] [0.010] [0.009] [0.009]
) 0.000 -0.012**
Time trend
[0.004] [0.005]
Year fixed effects No No No Yes No Yes
Observations 183 135 135 135 135 135

Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1
Source: Telecom Advisory Services analysis

In all cases, the dynamic effects seem to account, as energy productivity seems to
depend on its past values. More importantly for our purposes, the economic effect of
cloud computing penetration seems to be unchanged after following this estimation
strategy. Moreover, the coefficient associated with availability zones seems to be
more relevant than in previous estimates, being significant even when incorporating
the trend effects (column (iii)), although it loses significance in further estimates. In
any case, the spatial effects remain relevant, as denoted by the coefficient associated
to the spatial lag of availability zones.

Changes arise with respect to the IT share variable, as now it loses significance when
introducing the set of control variables. This means that controlling for structural
factors denoted in previous values of energy productivity reduces the relevance of
the IT sector as a regressor, possibly because now the negative side of IT (such as
rebound effects and high energy consumption from electronic devices) seem to
counteract the positive effects.
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As for the control variables, income per capita remains an important driver of energy
productivity, while now, after controlling for past values of the dependent variable,
the manufacturing weight exhibits a positive and significant sign. In addition, the
urban variable presents a negative and significant (at 10%) coefficient in some of
the estimates, suggesting that the migration of people to urban areas can be
associated with them starting to conduct more energy intensive activities.
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APPENDIX D. DATA SOURCES FOR COMPARATIVE ANALYSIS OF
ENERGY PRODUCTIVITY BY SECTOR

Value added for each economic sector was extracted from the Eurostat database.!?
As for electricity consumption, Eurostat also reports data for all manufacturing
industries but does not provide data on electricity consumption for agriculture,
forestry and fishing, and IT. In this case, agriculture and fishing electricity
consumption data was obtained from International Energy Agency (IEA).13 While
those estimates do not contemplate forestry, we believe that electricity consumption

of this subsector can be considered de minimis.

Table D-1. Data sources for calculating sector energy productivity

Data source | Data source for
Sector Detailed definition for Value electricity
Added consumption
Food Manufacture of food products; beverages and Eurostat Eurostat
tobacco products
. Manufacture of textiles, wearing apparel,
Textile leather and related products Eurostat Eurostat
Manufacture of wood and of products of wood
Wood and cork, except furniture; manufacture of Eurostat Eurostat
articles of straw and plaiting materials
Paper Manufacture of paper and paper products Eurostat Eurostat
Rubber and plastic | Manufacture of rubber and plastic products Eurostat Eurostat
Metals Manufacture of basic metals Eurostat Eurostat
Agriculture Agriculture, forestry and fishing Eurostat IEA
Estimated from data
IT Information and Communication Eurostat provided by IEA, ITU,
and Data Center Map

Source: Telecom Advisory Services analysis

Electricity consumption for the IT sector had to be estimated from several data
sources by relying on the following approach (see figure D-1).

12

https://ec.europa.eu/eurostat/databrowser/view/nrg_d_indq_n_ custom_9203481/default/table?]
ang=en

13 https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-
browser?country=WORLD&fuel=Energy%?20consumption&indicator=ElecConsBySector
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Figure D-1. Methodology for estimating energy productivity in the IT sector

Electricity
consumption for =
data centers

Source: IEA

Electricity
consumption for | _|
telecom
networks Number of data Electricity Gross value

Source: IEA centers and consumption for added for IT by
internet traffic = IT for France, = country

per country Germany, and Source: EUROSTAT
Netherlands

Sources: ITU; Data Center
Map

Source: Montevecchi. Reporrt
to the EC

’ |:| Original data sources - Calculated fields

Source: Telecom Advisory Services

As indicated by the IEA, the two primary sources of electricity consumption
associated with the IT industry are telecommunication networks, and data centers.
The IEA reports values for both segments for 2015 and projects 2022 levels based
on an interval.l1# Based on a constant compound annual growth rate and on the
conservative forecast provided by IEA for 2022, we estimate a 2021 global
consumption of electricity of 254 million MWh generated by telecommunications
network traffic and 234 million MWh by data centers. By considering the global data
traffic for 2021 (3,310 exabytes, estimated from IEA), and the total number of data
centers (5,065 as detailed in Data Center Map1°), we estimate that, on average, each
exabyte of data traffic requires annually 76,694.51 MWh, while each data center
consumed on average 46166.70 MWh.

As areliability check, we compare the estimated values of IT electricity consumption
with the figures estimated in Montevecchi et al. (2020). The authors estimated
electricity consumption based on microeconomic drivers for cloud computing for
France, Germany, Netherlands and the United Kingdom up to 2018: 11.68, 15.50,
5.40 and 12 million MWh, respectively (see figure 18, page 58). These figures were
calculated through chain ratios for the diverse IT components needed to deliver
cloud (server, storage, network) and the infrastructure (cooling, UPS, other).

Our data is based on 2021, so it is expected to represent higher values than that
reported in Montevecchi et al (2020). Before conducting the direct comparison, we
first must identify which share of our estimated total IT electricity consumption is
attributable to cloud. To do so, we rely on Cisco figures for 2019, where nearly 90%
of the workloads and compute instances in data centers in Western Europe were
estimated to be cloud workloads and only 10% traditional workloads (Montevecchi

14 https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-
networks#tracking
15 https://www.datacentermap.com/datacenters/
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et al, 2020). On the other hand, measured by data center IP traffic, cloud computing
will be responsible for 93% of the traffic in Western Europe in 2019 (Cisco, 2018).

Therefore, by applying to our estimate of data center electricity consumption a share
0f 90% attributable to cloud, and to our estimates of data traffic consumption a share
of 93% (also attributed to cloud), we can estimate the cloud computing electricity
consumption in 2021 for France, Germany, Netherlands and the United Kingdom
seems to be very consistent with Montevecchi et al. (2020) estimations for 2018

(Table D-2).

Table D-2. Calculation of electricity consumption for IT sector (2021)

Estimations conducted for this study Estimations
Electricity Electricity Electricity Electricity of
Country consumption of | consumption of | consumption | consumption of | Montevecchi
internet traffic Data Centers of IT sector | Cloud computing | etal. (2020)
(MWh) for year | (MWh) for year (MWh) for (MWh) for year | (MWh) for
2021 2021 year 2021 2021 year 2018
France 6758202.629 7709692.279 14467892.13 11681912.12 11680000
Germany 8088100.915 11402956.34 19491057.26 15504004.07 15500000
Netherlands 1570090.145 5632229.506 7202319.651 5402745.989 5400000
United 10483955.61 13203424.45 23687380.06 21633161.75 12000000
Kingdom

Sources: International Energy Agency; International Telecommunication Union; Data Center Map,

Telecom Advisory Services analysis

Having validated our estimated electricity consumption for the IT sector in each
country, and the value added for this sector reported in Eurostat, we can now
calculate the electricity efficiency of this industry and compare it with the rest of the
sectors across each country.
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