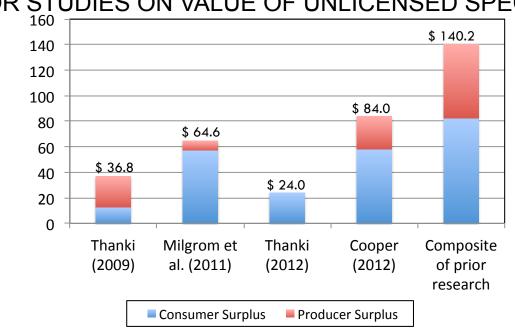
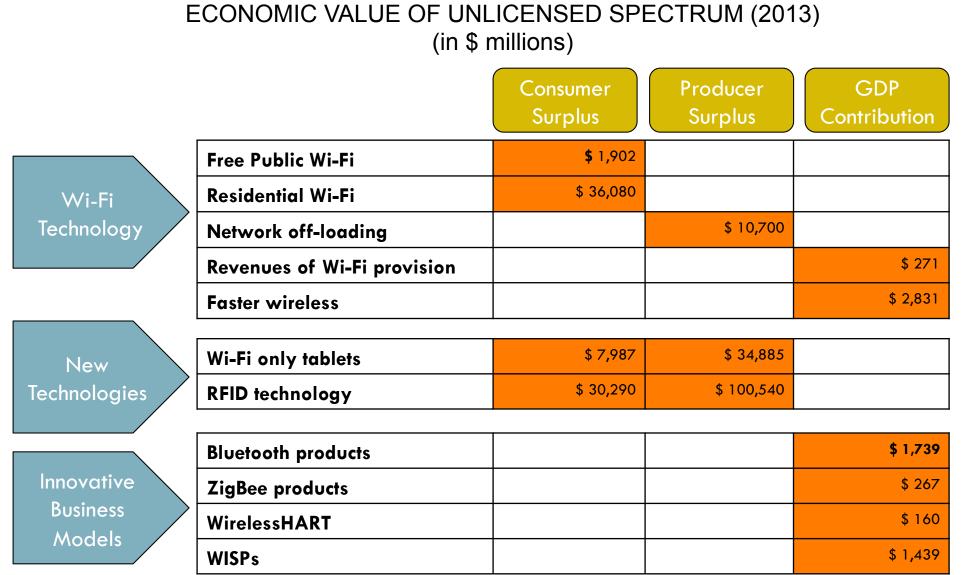
THE FUTURE ECONOMIC VALUE OF UNLICENSED SPECTRUM


Raul L. Katz

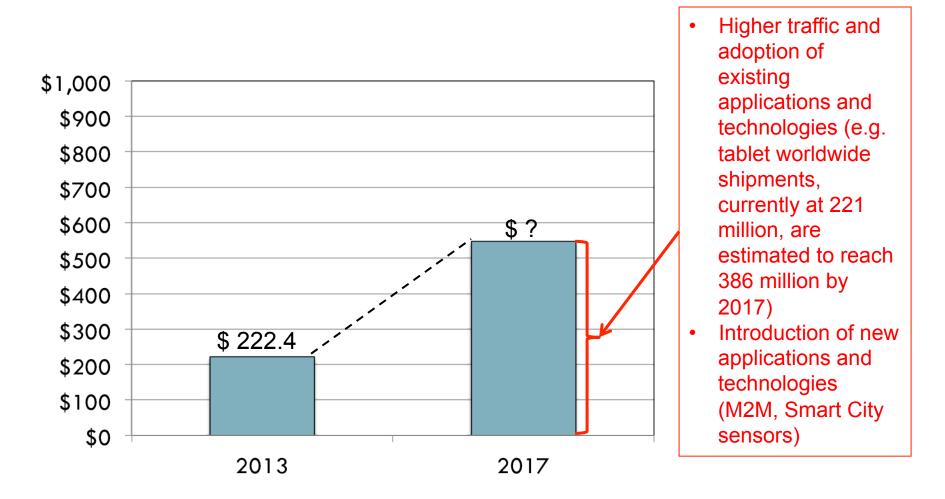
Telecom Advisory Services, LLC

What is the future of Wi-Fi? Mountain View, September 11, 2014

THE MEASUREMENT OF ECONOMIC VALUE OF UNLICENSED SPECTRUM IS A COMPLEX TASK


- Unlicensed spectrum is used by numerous devices and services
- In some cases, services are offered as a free good to consumer (how does one quantify the willingness to pay?)
- The diffusion of innovations relying on unlicensed spectrum is proceeding at an extremely fast pace, which renders studies obsolete after a few months
- As a result, there are only a few studies conducted so far

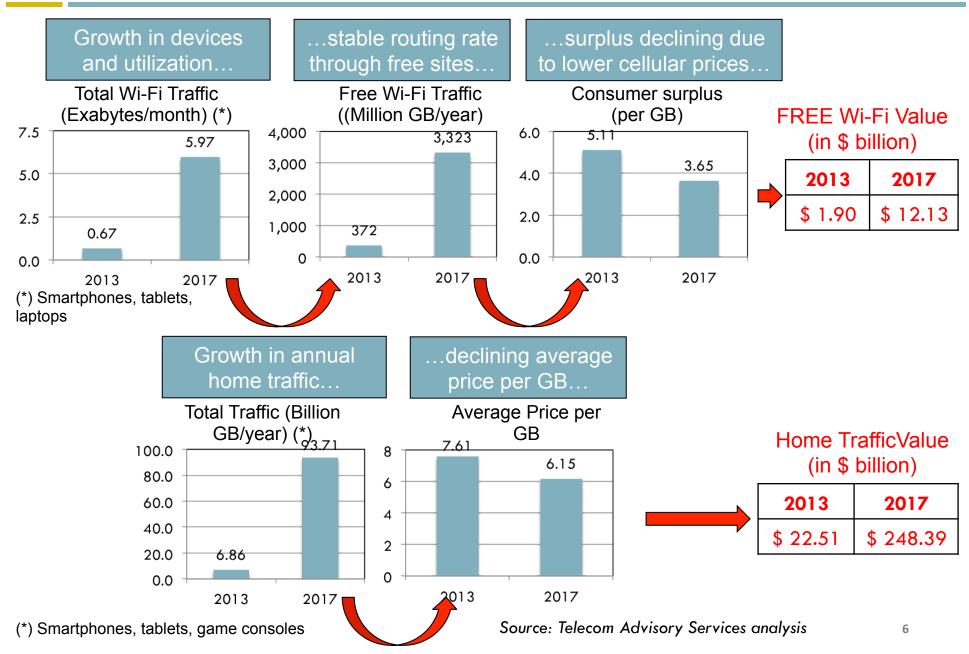
PRIOR STUDIES ON VALUE OF UNLICENSED SPECTRUM


Source: Compiled by Telecom Advisory Services

OUR PRIOR STUDY ESTIMATED THAT IN 2013 UNLICENSED SPECTRUM GENERATED AN ECONOMIC SURPLUS OF \$ 222 BILLION AND CONTRIBUTED \$ 6.7 BILLION TO THE GDP

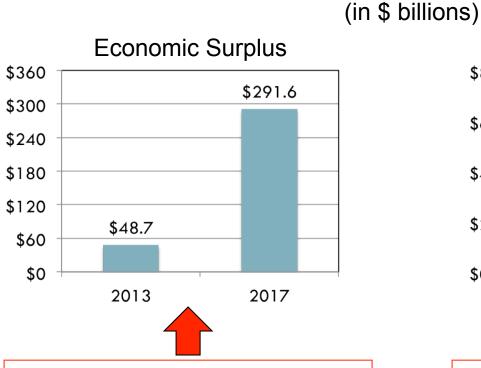
A DIFFERENT QUESTION TO TACKLE IS HOW MUCH VALUE WE CAN EXPECT UNLICENSED TECHNOLOGIES TO GENERATE IN THE FUTURE

FUTURE ECONOMIC VALUE OF UNLICENSED SPECTRUM

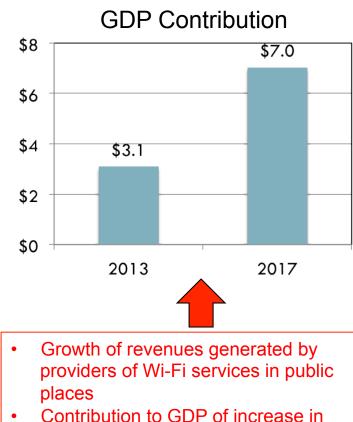


Source: Telecom Advisory Services analysis

FIRST SET OF QUESTIONS: WHAT IS THE IMPACT OF GROWTH AND ECONOMICS OF CURRENT APPLICATIONS AND TECHNOLOGIES?

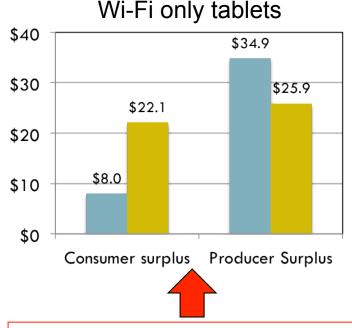

FUTURE ECONOMIC VALUE OF UNLICENSED SPECTRUM			
		Future increase in consumer and producer surplus as well as GDP contribution	
Wi-Fi Technology	Free Public Wi-Fi	 What is the expected growth in Wi-Fi traffic in public sites? What is the future price of cellular GB? 	
	Residential Wi-Fi	 What is the growth in annual home traffic of devices with no wireline connectivity? 	
	Network off-loading	 Are there any changes in carriers' cumulative Wi-Fi CAPEX and OPEX to accommodate future traffic? 	
	Revenues of Wi-Fi provision	 What is the expected growth of retail Wi-Fi service providers? 	
	Faster wireless	 What is the increase of average cellular and Wi-Fi speeds? 	
New Technologies	Wi-Fi only tablets	 Expected growth of Wi-Fi only tablet shipments? What is the projected Apple market share? 	
	RFID technology	 Future adoption of RFID technology in retail and health care? 	
Innovative Business Models	Bluetooth products	What is the growth of Bluetooth enabled devices?What is the future cost of Bluetooth chipset?	
	ZigBee and WirelessHART products	 Expected growth of Zigbee market? Expected growth of WirelessHART market? 	
	WISPs	 Expected growth of WISPs subscribers and ARPU? 	

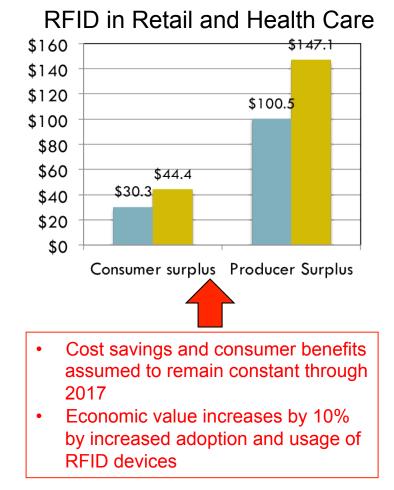
THE GROWTH IN WI-FI ECONOMIC VALUE RESULTS FROM THE EXPLOSIVE GROWTH IN DEVICES AND UTILIZATION



BY 2017, WI-FI TECHNOLOGY IS EXPECTED TO INCREASE ITS TOTAL ECONOMIC SURPLUS TO \$291.6 BILLION , WHILE CONTRIBUTING \$7.0 BILLION TO THE GDP

ECONOMIC VALUE OF WI-FI (2013-2017)


- Increase in diffusion of devices without wireline connectivity
- Growth in traffic generated per device
- Decline in cellular pricing is not enough to neutralize Wi-Fi economic advantage


 Contribution to GDP of increase in average wireless speed resulting from Wi-Fi off-loading

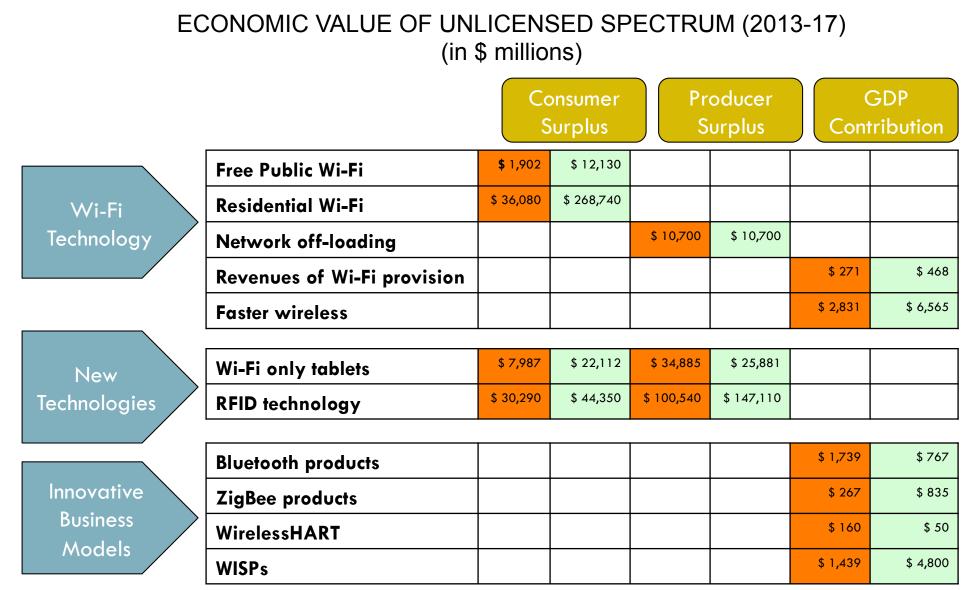
ECONOMIC VALUE GENERATED FROM NEW TECHNOLOGIES – WI-FI TABLETS AND RFID – WILL INCREASE TO \$239 BILLION FROM \$174 BILLION

ECONOMIC VALUE OF NEW TECHNOLOGIES (2013-2017) (in \$ billions)

- Increase in global shipments with US manufacturers preserving share (68%)
- Decline in Wi-Fi only devices to 82%
- Apple's market share (manufacturer with highest producer surplus) will decline to 30%
- Prices will remain constant, with increasing willingness to pay

FINALLY, INNOVATIVE BUSINESS MODELS WILL INCREASE THEIR CONTRIBUTION TO GDP FROM \$6.4 BILLION FROM \$3.6 BILLION

ECONOMIC VALUE OF NEW BUSINESS MODELS (2013-2017) (in \$ billions)


Source: Telecom Advisory Services analysis

\$2.5 \$2.2 \$2.0 \$1.7 \$1.5 \$1.0 \$0.5 \$0.0 2013 2017 Smartphone shipments to reach 183 million, PCs 356 million, printers 725 million Bluetooth chipset to decline from \$1 to \$0.20

• Zigbee market to grow 33%

Wireless Personal Area Networks

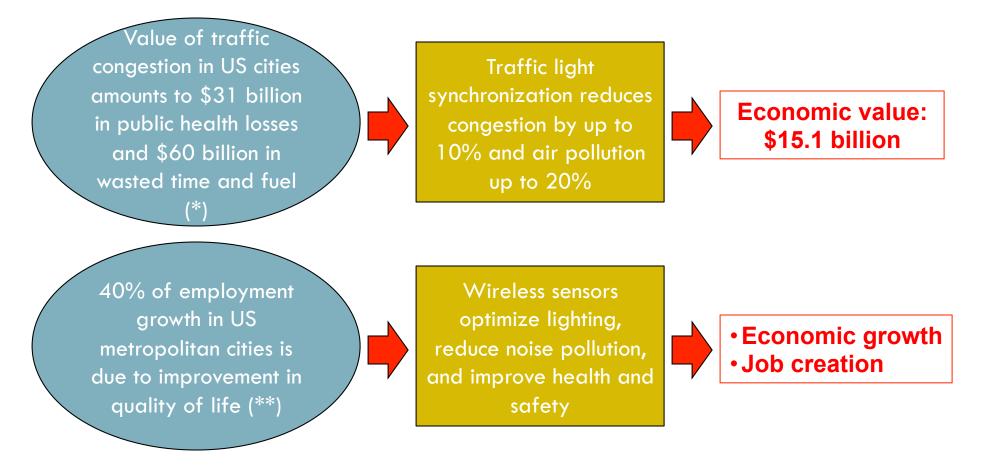
IN SUM, BY 2017 ECONOMIC SURPLUS FROM EXISTING TECHNOLOGIES WILL DOUBLE FROM 2013 TO \$ 531 BILLION WHILE GDP CONTRIBUTION WILL RISE TO \$ 13.5 BILLION

SECOND SET OF QUESTIONS: WHAT IS THE IMPACT OF STILL EMERGING TECHNOLOGIES?

EMERGING TECHNOLOGY	SUBSET	EXAMPLES OF IMPACT
High Speed Wireless	• WirelessHD • WiGig	 Ease of deployment of in-house devices Complement residential Wi-Fi networks
Low Frequency Wi-Fi	 Broadband provision in wide areas 	 Rural broadband coverage
Machine to Machine	 M2M applications relying on unlicensed spectrum Wearable devices 	 Improved energy consumption Security Health monitoring
Smart City Deployments	 Distributed networks of wireless intelligent sensors 	 Reduce pollution concentration Optimization of energy consumption and traffic flows
Agricultural automation	 Network of wireles sensors RFID tags for field data collection 	 Increase in Total Factor Productivity

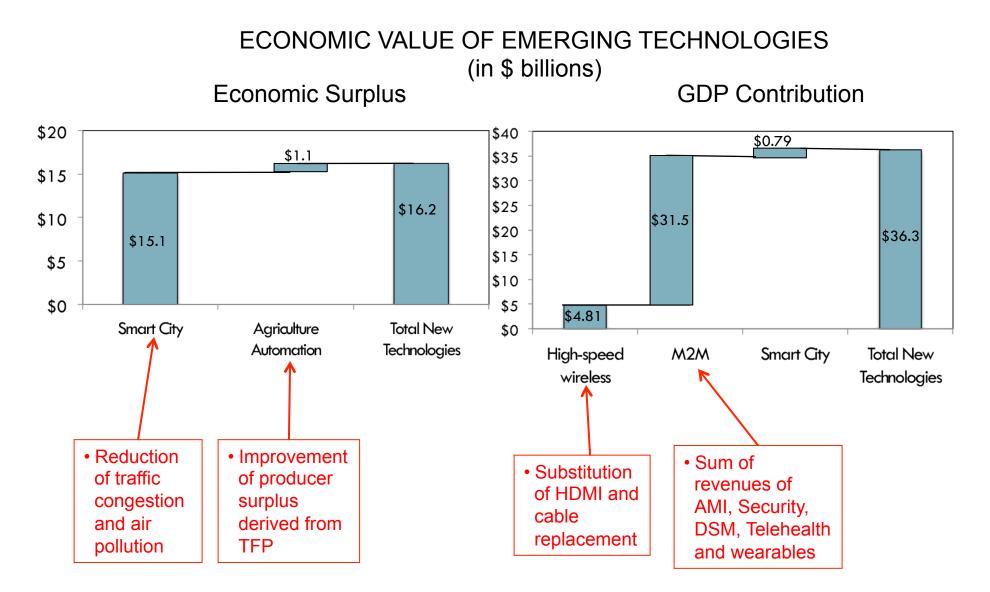
FOR EXAMPLE, UNLICENSED SPECTRUM IS A CRITICAL ENABLER OF MACHINE TO MACHINE TECHNOLOGY, WHICH WILL CONTRIBUTE OVER \$31 BILLION TO THE GDP

MACHINE TO MACHINE MARKET(2013-17)



Wearable Devices

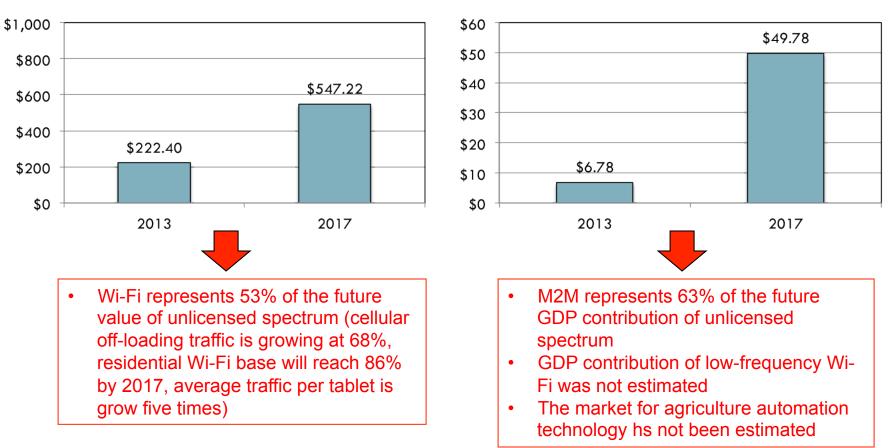
Source: Telecom Advisory Services analysis


SMART CITY WIRELESS SENSOR NETWORKS ARE ALSO A CRITICAL PLATFORM TO REDUCE POLLUTION AND IMPROVE URBAN QUALITY OF LIFE

SMART CITY NETWORKS ECONOMIC IMPACT

(*) Harvard Center for Risk Analysis (2010); Texas Transportation Institute (2007) (**) Shapiro (2005). *Smart Cities: Quality of Life, Productivity, and the Growth Effects of Human Capital*

NET NET, EMERGING TECHNOLOGIES OPERATING IN UNLICENSED SPECTRUM WILL GENERATE AN ECONOMIC VALUE OF \$ 16.2 BILLION AND CONTRIBUTE \$36.3 BILLION TO THE GDP



Source: Telecom Advisory Services analysis

TO SUM UP, FUTURE IMPACT OF UNLICENSED SPECTRUM WILL MORE THAN DOUBLE IN ECONOMIC SURPLUS AND GROW SEVEN TIMES IN TERMS OF GDP CONTRIBUTION

FUTURE ECONOMIC VALUE OF UNLICENSED SPECTRUM

GDP Contribution

Economic Surplus

THE ACHIEVEMENT OF THE AFOREMENTIONED IMPACT IS CONTINGENT UPON ADDRESSING SOME SPECTRUM BOTTLENECKS

BOTTLENECK	SITUATION	RISKS
High-density urban areas	 In device dense environments, data overheads consume between 80% and 90% of capacity (Wagstaff, 2009; Van Bloem, 2011) Wi-Fi traffic growth in central city locations up to 6 times higher than on their cellular networks (Aegis, 2013) 	 Unless 160-100 Mhz of additional spectrum are made available, risk of substantial service degradation The limitation on speed increase will have an impact of \$4.4 billion Potential disappearance of Wi-Fi service provider industry (\$468 million reduction in GDP contribution)
Residential Wi-Fi	 In-door video distribution by off-net devices is putting considerable pressure on home routers Full migration to 802.11 ac will require approximately 10 years 	 Unless 120 MHz are allocated by 2017, residential Wi-Fi will become a capacity bottleneck Consumers will have to switch to either wireline distribution or cellular networks (\$14 billion value erosion)

THE IMPLICATIONS OF STUDY FINDINGS FOR MANAGEMENT OF THE SPECTRUM ARE STRAIGHTFORWARD

- Unlicensed spectrum, as an enabling resource, is a critical driver of innovation and value creation
- These effects, as proven through the evidence generated in the study, support a policy that preserves unlicensed spectrum
- Furthermore, given the exponential growth in utilization of technologies such as Wi-Fi, it is reasonable to consider the potential expansion of the amount of unlicensed spectrum
 - Designation of the U-NII-4 spectrum for unlicensed use wold be valuable for small cell deployments
 - Portions of the 3.5 GHz, with rules that allow for secondary users to access the band when not in use by the federal government, could enable better quality of service
 - The 600 MHz band could be well suited to off-loading some of the residential Wi-Fi traffic

TELECOM ADVISORY SERVICES, LLC

For further information please contact:

Raul Katz, raul.katz@teleadvs.com, +1 (845) 868-1653 Telecom Advisory Services LLC 182 Stissing Road Stanfordville, New York 12581 USA